ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакции, утвержденной приказом Росстандарта № 531 от 23.03.2018 г.)

Приемники измерительные портативные R&S PR100

Назначение средства измерений

Приемники измерительные портативные R&S PR100 предназначены для измерений амплитудно-частотных параметров (частота, мощность и др.) радиотехнических сигналов и исследования спектра, выделения информационных составляющих из модулированных сигналов.

Описание средства измерений

Конструктивно приемник измерительный портативный R&S PR100 выполнены в виде портативного моноблочного прибора, объединяющего в своем составе входной тракт, преселектор, смеситель, тракт промежуточной частоты (ПЧ), аналогово-цифровой преобразователь (АЦП) и индикатор.

Принцип действия приемников измерительных портативных R&S PR100 основан на методе последовательного анализа сигнала в широкой полосе частот и параллельного анализа сигналов в узкой полосе частот. Приемники измерительные портативные R&S PR100 построены по супергетеродинному принципу с измерениями на промежуточной частоте. В результате обработки сигнала, а также в соответствии с настройками приемника выделяется часть сигнала, предназначенная для отображения на экране.

Приемники измерительные портативные R&S PR100 обеспечивают управление всеми режимами работы и характеристиками как вручную с помощью органов управления на лицевой части, так и дистанционно от внешнего компьютера с применением интерфейсов LAN или USB. Предусмотрена возможность сохранения данных конфигурации и пользовательских настроек на SD карте памяти.

Опционально приемники измерительные портативные R&S PR100 могут обеспечивать следующие функции:

R&S PR100-PS - программно реализованный режим панорамного сканирования;

R&S PR100-IR - запись спектрограммы, параметров спектра и измерительной информации в память приемника или на SD карту, запись аудиофайлов с возможностью воспроизведения;

R&S PR100-RC - дистанционное управление приемником с применением унифицированной системы команд SCPI;

R&S PR100-ETM - запуск/остановка записи измерительной информации по условию;

R&S PR100-FS - измерение напряженности электрического поля, включая расчет измеренного значения на основе сохраненных данных о параметрах антенны и отображение значений в дБмкВ/м на дисплее;

R&S~PR100-FP - работа в диапазоне частот от 7,5 до 18 $\Gamma\Gamma$ ц в комплекте с активной антенной с понижающим конвертером R&S~HF907DC с отображением на дисплее пересчитанных значений частоты;

R&S PR100-GPS - обработка данных, поступающих с навигационного модуля GPS.

Внешний вид приемника измерительного портативного R&S PR100, обозначение места нанесения знака утверждения типа и знака поверки приведены на рисунке 1.

Схема пломбировки от несанкционированного доступа приведена на рисунке 2.

Рисунок 1 - Общий вид средства измерений

Рисунок 2 - Схема пломбировки от несанкционированного доступа

Программное обеспечение

Работа приемников измерительных портативных R&S PR100 осуществляется под управлением программного обеспечения (ПО) «R&S PR100 Firmware».

Идентификационные данные (признаки) метрологически значимой части программного обеспечения указаны в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения (ПО)

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	PR100 Instrument
	firmware
Номер версии (идентификационный номер) ПО	4.01 и выше
Цифровой идентификатор ПО	515A765E
Алгоритм вычисления цифрового идентификатора ПО	CRC32

Влияние метрологически значимой части ΠO на метрологические характеристики приемников измерительных портативных R&S PR100 не выходит за пределы согласованного допуска.

Метрологически значимая часть ПО приемников измерительных портативных R&S PR100 и измеренные данные достаточно защищены с помощью специальных средств защиты от непреднамеренных и преднамеренных изменений. Уровень защиты программного обеспечения «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические и технические характеристики

Наименование характеристики	Значение	
1	2	
Диапазон рабочих частот, Гц	от $9,0 \times 10^3$ до $7,5 \times 10^9$	
Пределы допускаемой относительной погрешности воспроизведения	±2·10 ⁻⁶	
частоты опорного генератора		
Диапазон установки полосы обзора, кГц	от 1 до 1·10⁴	
дианазон установки полосы обзора, кі ц	с шагом 1,2,5	
КСВН входного тракта, не более:		
- в диапазоне частот от 9 кГц до 3,5 ГГц включ.	2	
- в диапазоне частот свыше 3,5 ГГц до 7,5 ГГц включ.	3	
Диапазон измерений уровня входного сигнала, дБм ¹	от -137 до 0	
Пределы допускаемой погрешности измерений уровня сигнала, дБ:		
- в диапазоне рабочих температур	±3	
- в диапазоне температур от 20 до 30 °C	±1,5	
Ослабление входного аттенюатора, дБ	0 или 25	
(обеспечивается в диапазоне частот от 20 МГц до 3,5 ГГц)	О ИЛИ 23	
Тип преселектора:		
- для диапазона частот от 9 кГц до 30 МГц включ.	фильтр нижних частот	
- для диапазона частот свыше 20 МГц до 1,5 ГГц включ.	полосовые фильтры	
- для диапазона часто свыше 1,5 ГГц до 7,5 ГГц включ.	комбинация ФВЧ/ФНЧ	
Средний отображаемый уровень собственных шумов, дБм,		
не более:		
- в диапазоне частот от 100 кГц до 20 МГц включ.	-151,5	
- в диапазоне частот свыше 20 МГц до 1,5 ГГц включ.	-158,5	
- в диапазоне частот свыше 1,5 ГГц до 7,5 ГГц включ.	-147,0	
¹ Здесь и далее дБм обозначает уровень в дБ относительно 1 мкВ		

Продолжение таблицы 2

Продолжение таолицы 2	
1	2
Относительный уровень фазовых шумов при отстройке 100 кГц,	
дБн, не более:	
- в диапазоне частот от 100 кГц до 20 МГц включ.	-104
- в диапазоне частот свыше 20 МГц до 1,5 ГГц включ.	-95
- в диапазоне частот свыше 1,5 ГГц до 7,5 ГГц включ.	-81
Точка пересечения по интермодуляционным составляющим	
третьего порядка, дБм, не менее:	
- в диапазоне частот от 9 кГц до 30 МГц включ.	22
- в диапазоне частот свыше 20 МГц до 1,5 ГГц включ.	20
- в диапазоне частот свыше 1,5 ГГц до 3,5 ГГц включ.	20
Уровень подавления зеркальной частоты, дБ, не менее	85
Уровень подавления промежуточной частоты, дБ, не менее	85
Режимы отображения	перезапись, усреднение,
	накопление максимума,
	накопление минимума
Воления и поможинальни	АМ, ЧМ, ИМ, І/Q, ВБП,
Режимы демодуляции	НБП, CW
	0,15; 0,3; 0,6;
Полосы демодуляции, кГц	1; 5; 2; 4; 6; 9; 15; 30; 50; 120;
	150; 250; 300; 500
Напряжение питания от сети переменного тока частотой 50	
или 60 Гц с использованием оригинального блока питания,	от 100 до 240
входящего в комплект поставки, В	
Габаритные размеры (ширина × высота × длина), мм, не более	192 ´ 320 ´ 62
Масса, кг, не более	2.5
(без аксессуаров)	3,5
Рабочие условия эксплуатации:	
- температура окружающего воздуха при работе от	от -10 до 55
аккумуляторной батареи, °С	
- температура окружающего воздуха при работе от блока	от 0 до 40
питания, °C	
- относительная влажность воздуха при температуре 20 °C, %	до 80

Знак утверждения типа

наносится на лицевую панель приемника измерительного портативного R&S PR100 в виде наклейки и типографским способом на титульный лист эксплуатационной документации.

Комплектность средства измерений

Таблица 3 - Комплектность средства измерений

Наименование	Обозначение	Количество
1	2	3
Приемник измерительный портативный	R&S PR100	1 шт.
Блок питания		1 шт.
Элемент питания для автономной работы		1 шт.
(аккумуляторная батарея)		
Карта памяти SD		1 шт
Кабель LAN		1 шт.
Кабель USB		1 шт.

Продолжение таблицы 3

1	2	3
Программное обеспечение		1 шт.
Плечевой ремень		1 шт.
Транспортная упаковка		1 шт.
Методика поверки	МП 52163-12	1 экз.
Эксплутационная документация		1 экз.

Поверка

осуществляется по документу МП 52163-12 «Инструкция. Приемники измерительные портативные R&S PR100 фирмы «Rohde & Schwarz GmbH & Co. KG», Германия. Методика поверки», утвержденному ГЦИ СИ ФБУ «ГНМЦ Минобороны России» 17.05.2012 года.

Основные средства поверки:

- стандарт частоты и времени рубидиевый Ч1-1016 (регистрационный номер 35376-07);
- генератор сигналов низкочастотный ГЗ-119 (регистрационный номер 9173-83);
- измеритель модуля коэффициента передачи и отражения P2M-18 (регистрационный номер 36013-07);
 - синтезатор частот Г7М-20 (регистрационный номер 9273-85);
 - частотомер электронно-счетный ЧЗ-66 (регистрационный номер 9273-85);
 - вольтметр переменного тока ВЗ-63 (регистрационный номер 9273-85);
 - ваттметр поглощаемой мощности М3-54 (регистрационный номер 7058-79).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на переднюю панель приемников измерительных портативных R&S PR100 в соответствии с рис. 1 или на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к приемникам измерительным портативным R&S PR100

Техническая документации фирмы - изготовителя.

Изготовители

Фирма «Rohde & Schwarz GmbH & Co. KG», Германия Адрес: Muehldorfstrasse 15, 81671 Munich, Germany

Телефон: +49 89 41 29 0 Факс: +49 89 41 29 12 164

Web-сайт: https://www.rohde-schwarz.com
E-mail: customersupport@rohde-schwarz.com

Фирма «Rohde & Schwarz Technologies Malaysia Sdn Bhd», Малайзия

Адрес: PAT SQUARE, Jalan Pelukis U1/46, Temasya Industrial Park, 40150 Shah Alam, Selangor, Malaysia

Телефон: +603 5569 0011 Факс: +603 5569 0088

Web-сайт: https://www.rohde-schwarz.com E-mail: support.malaysia@rohde-schwarz.com

Заявитель

Представительство фирмы «РОДЕ И ШВАРЦ ГМБХ И КО.КГ» (Германия)

ИНН 9909002668

Адрес: 115093 г. Москва, Павловская, д.7, стр.1

Телефон: +7 (495) 981-3560 Факс: +7 (495) 981-3565

Web-сайт: https://www.rohde-schwarz.ru E-mail: sales.russia@rohde-schwarz.com

Испытательный центр

Государственный центр испытаний средств измерений Федеральное бюджетное учреждение «Главный научный метрологический центр Министерства обороны Российской Федерации» (ГЦИ СИ ФБУ «ГНМЦ Минобороны России»)

Адрес: 141006, Московская область, г. Мытищи, ул. Комарова, 13

Телефон: +7 (495) 583-99-23

Аттестат аккредитации ГЦИ СИ ФБУ «ГНМЦ Минобороны России» по проведению испытаний средств измерений в целях утверждения типа № 30018-10 от 05.08.2011 г.

В части вносимых изменений:

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7 (495) 544-00-00 Web-сайт: http://www.rostest.ru

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » _____ 2018 г.