ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы регистрации импульсов фотонного излучения цифровые спектрометрические ЦСР-СК1

Назначение средства измерений

Система регистрации импульсов фотонного излучения цифровая спектрометрическая ЦСР-СК1 (далее – система ЦСР-СК1) предназначена для измерения характеристик потока квантов рентгеновского и гамма-излучения (число статистически и равномерно распределенных импульсов в течение заданного времени, распределение квантов излучения по энергиям) от радиоизотопных источников ¹⁰⁹Cd и ²⁴¹Am в составе установок, использующих гамма-абсорбционный метод контроля.

Описание средства измерений

Принцип действия системы ЦСР-СК1 основан на прямом счете статистически и равномерно распределенных во времени импульсов, поступающих от блока детектирования за заданное время измерения, аналого-цифровой обработке амплитуд импульсов и распределении квантов излучения по энергиям.

Система ЦСР-СК1 представляет собой функционально-полный измерительнонакопительный комплекс, выполненный в виде выносного блока детектирования и платы процессора спектрометрических импульсов, устанавливаемой в ПВЭМ, и связанный с ней через стандартный порт USB.

В состав системы ЦСР-СК1 входят:

- блок детектирования (БД), включающий сцинтилляционный детектор с кристаллом NaI(Tl), фотоэлектронный умножитель (ФЭУ) и встроенный малогабаритный источник высокого напряжения;
 - встраиваемая плата процессора спектрометрических импульсов (ПСИ);
- прикладное программное обеспечение (ПО) программа управления ATSpec-4, предназначенная для обработки информации и анализа спектров.

Работа системы ЦСР-СК1 осуществляется с помощью программного обеспечения и управляющей ПВЭМ со стандартным набором периферийных устройств, поставляемой по дополнительному Заказу.

Для защиты от несанкционированного доступа в целях предотвращения вмешательств, которые могут привести к искажению результатов измерений, корпус блока детектирования снаружи опломбирован, корпус управляющей ПВЭМ, в которую устанавливают встраиваемую плату ПСИ, при эксплуатации системы ЦСР-СК1 должен быть опломбирован.

Фото общего вида системы ЦСР-СК1 с управляющей ПЭВМ приведено на рисунке 1.

Программное обеспечение

Идентификационные данные программного обеспечения

идентификационные данные программного обеспечения						
Наименование	Идентифика-	Номер версии	Цифровой иденти-	Алгоритм		
программного	ционное на-	(идентификаци-	фикатор программ-	вычисления циф-		
обеспечения (ПО)	именование	онный номер	ного обеспечения	рового идентифи-		
	программного	программного	(контрольная сумма	катора программ-		
	обеспечения	обеспечения)	исполняемого кода)	ного обеспечения		
Программа управ-	ATS-4	4.2.1.117	20d49d291da5bf7cecf			
ления ATSpec-4	A13-4	4.2.1.117	1119fd002eb9a	MD5 Hasher		

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «А» по МИ 3286-2010.

Влияние программного обеспечения учтено изготовителем при нормировании метрологических характеристик системы ЦСР-СК1.

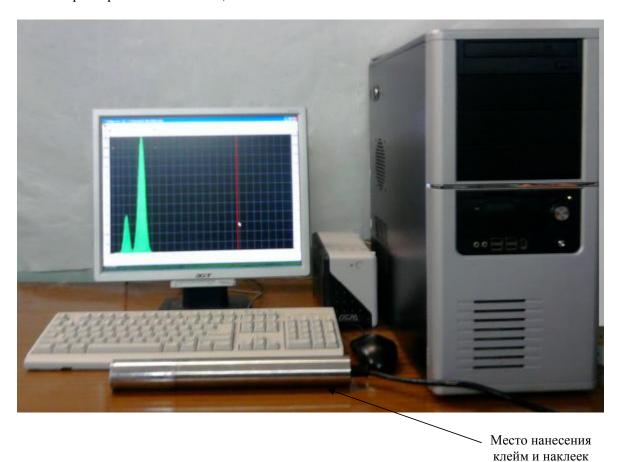


Рисунок 1 – Общий вид системы ЦСР-СК1 с управляющей ПЭВМ

Метрологические и технические характеристики

Наименование характеристики	Значение характеристики
Диапазон энергии регистрируемого излучения, кэВ	от 10 до 100
Диапазон измерений числа импульсов	от 10 до 10 ⁷
Относительное энергетическое разрешение по линии ²⁴¹ Ат с энер-	
гией 59,5412 кэВ для сцинтилляционного детектора с кристаллом	26
NaI (Tl), %, не более	
Интегральная нелинейность энергетического распределения для	
сцинтилляционного детектора с кристаллом NaI (Tl), %, не более	2
Максимальная входная статистическая загрузка, с ⁻¹ :	10^{5}
- относительное изменение разрешения, %	±5
- относительное смещение центроиды пика, %	±10
Пределы допускаемой относительной погрешности измерений	
числа импульсов, %	±3,5
Время набора импульсов, с	от 1 до 100
Время установления рабочего режима, мин, не более	15
Время непрерывной работы, ч	8
Нестабильность показаний (число импульсов) за 8 ч непрерывной	
работы, %, не более	0,2

Наименование характеристики	Значение характеристики
Параметры электрического питания:	
от сети переменного тока	220 +22
- напряжением, В	220^{+22}_{-33}
- частотой, Гц	$50^{+1}_{-2,5}$
Потребляемая мощность (без ПЭВМ), Вт, не более	20
Габаритные размеры, мм, не более:	
- блока детектирования (длина, диаметр)	325x40
- плата процессора спектрометрических импульсов	
(длина, ширина, высота)	165x85x15
Масса (без ПЭВМ), кг, не более	1
Условия эксплуатации:	
- температура окружающего воздуха, °С	от 15 до 35
- атмосферное давление, кПа	от 84 до 106,7
- относительная влажность воздуха, %, не более	80
Средняя наработка на отказ, ч, не менее	10000
Средний срок службы, лет, не менее	5

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации («Руководство по эксплуатации», «Паспорт») типографским способом и на корпус блока детектирования системы ЦСР-СК1 в виде наклейки.

Комплектность средства измерений

комплектность средства измерении					
Наименование изделия	Обозначение	Кол-во	Примечание		
Система ЦСР-СК1	ЦСР-СК1	1 шт.			
Программное обеспечение	Программа управления		дистрибутив на ком-		
	ATSpec-4	1 шт.	пакт-диске		
ПЭВМ			поставляется по до-		
	-	1 шт.	полнительному Заказу		
Руководство по эксплуатации	Ж10-Р494.436230.001 РЭ	1 экз.			
Паспорт	Ж10-Р494.436230.001 ПС	1 экз.			
Методика поверки (раздел 4					
руководства по эксплуатации	-	1 экз.			
Ж10-Р494.436230.001 РЭ)					

Поверка

осуществляется в соответствии с разделом 4 «Поверка» руководства по эксплуатации Ж10-Р494.436230.001 РЭ, утвержденным ФГУП «УНИИМ» в 04.09.2012 г.

Эталоны, используемые при поверке:

- источник гамма-излучения закрытый типа ИРИК-Д с радионуклидом $^{109}\mathrm{Cd},$ активностью
- 0,925 ГБк (линии энергии фотонного излучения 22,5 и 88,0336 кэВ);
- источник гамма-излучения закрытый типа ИГИА-5м-I с радионуклидом 241 Am, активностью $8.3 \cdot 10^{10}$ Бк (линии энергии фотонного излучения 26,3448 и 59,5412 кэВ);
- генератор сигналов низкочастотный прецизионный Γ 3-110 с диапазоном частот $(0,01\div1999999,99)$ Γ ц, погрешностью установки частоты \pm $1\cdot10^{-7}$ Γ ц, максимальным выходным напряжением не менее 2 В;
- генератор импульсов точной амплитуды Γ 5-75, обеспечивающий выходные прямоугольные импульсы отрицательной полярности амплитудой от 0,01 до 9,999 B, длительностью от 0,1 до 10 мкс.

Сведения о методиках (методах) измерений

Методика измерений представлена в «Руководстве по эксплуатации».

Нормативные и технические документы, устанавливающие требования к системе ЦСР-СК1

ГОСТ 27451-87 Средства измерений ионизирующих излучений. Общие технические условия.

«Система регистрации импульсов фотонного излучения цифрововая спектрометрическая. Руководство по эксплуатации» Ж10-Р492.436220.001 РЭ.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Федеральное государственное унитарное предприятие «Комбинат «Электрохимприбор» (ФГУП «Комбинат «Электрохимприбор»)

Юридический адрес: 624200, г. Лесной Свердловской обл., Коммунистический пр., ба.

Почтовый адрес: 624200, г. Лесной Свердловской обл., Коммунистический пр., ба.

Контактные телефоны: (34342) 2-66-06. Факс (34342) 3-73-68, 3-05-65.

Телетайп: 221210 «Радар». E-mail: main@ehp-atom.ru.

Испытательный центр

Государственный центр испытаний средств измерений

ФГУП «Уральский научно-исследовательский институт метрологии» (ГЦИ СИ ФГУП «УНИИМ»)

620000, г. Екатеринбург, ул. Красноармейская, д. 4.

Телефон (343) 350-26-18, факс (343) 350-20-39, e-mail: uniim@uniim.ru

Аккредитован в соответствии с требованиями Федерального агентства по техническому регулированию и метрологии и зарегистрирован в Государственном реестре средств измерений под N 30005-11. Аттестат аккредитации от 03.08.2011 г.

Заместитель		
Руководителя Федерального		
агентства по техническому		
регулированию и метрологии	_	Ф.В. Булыгин
	М.п. « »	2012 г.