ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Выборгская лесопромышленная корпорация»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Выборгская лесопромышленная корпорация» (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии для осуществления эффективного автоматизированного коммерческого учета и контроля потребления электроэнергии и мощности потребляемой на оптовом рынке электроэнергии (мощности) (далее – ОРЭМ) по расчетным точкам учета, а также регистрации параметров электропотребления, формирования отчетных документов и передачи информации в ООО «ЭСК «Энергосбережение», ОАО «АТС» и прочим заинтересованным организациям в рамках согласованного регламента

Полученные данные и результаты измерений могут использоваться для коммерческих расчетов и оперативного управления энергопотреблением.

Описание средства измерений

АИИС КУЭ выполненная на основе ИИС «Пирамида» (Госреестр № 21906-11), представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные каналы (ИИК) АИИС КУЭ состоят из трех уровней:

1-ый уровень – измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-ой уровень — измерительно-вычислительный комплекс электроустановки (ИВКЭ) включающий устройство сбора и передачи данных (УСПД) СИКОН С50 Госреестр № 28523-05, технические средства приема-передачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.

3-ий уровень – информационно-вычислительный комплекс (ИВК), включает в себя сервер базы данных (СБД), коммуникаторы СИКОН ТС65, автоматизированное рабочее место (АРМ), устройство синхронизации системного времени (УССВ) УСВ-2, заводской № 2580, Госреестр № 41681-10, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АРМ оператора представляет собой персональный компьютер, на котором установлена клиентская часть ПО «Пирамида 2000. АРМ». АРМ по ЛВС предприятия связано с сервером, на котором установлено ПО «Пирамида 2000. Сервер». Для этого в настройках ПО «Пирамида 2000. АРМ» указывается IP-адрес сервера.

В качестве СБД используется сервер HP Proliant ML150 G6, установленный в ЦСОИ OOO «Выборгская лесопромышленная корпорация».

АИИС КУЭ решает следующие задачи:

периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);

- периодический (1 раз в сутки) и/или по запросу автоматический сбор данных о состоянии средств измерений во всех ИИК;
- хранение результатов измерений и данных о состоянии средств измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- периодический (1 раз в сутки) и/или по запросу автоматический сбор служебных параметров (изменения параметров базы данных, пропадание напряжения, коррекция даты и системного времени);
- передача результатов измерений ПАК ОАО «АТС» в рамках согласованного регламента;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени);

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с текущим московским временем. Результаты измерений передаются в целых числах кВт·ч.

Цифровой сигнал с выходов счетчиков посредством линий связи RS – 485, через коммуникатор СИКОН ТС65 по каналу GSM поступает в УСПД СИКОН С50. УСПД осуществляет обработку измерительной информации (умножение на коэффициенты трансформации, перевод измеренных значений в именованные физические величины) и передачу результатов измерений на верхний уровень АИИС КУЭ, по цифровым каналам связи.

СБД, установленный в ЦСОИ ООО «Выборгская лесопромышленная корпорация», через локальную вычислительную сеть производит опрос УСПД и считывает с него 30-минутный профиль мощности для каждого канала учета. Считанные значения записываются в БД (под управлением СУБД MS SQL Server). СБД производит вычисление получасовых значений электроэнергии на основании считанного профиля мощности, в автоматическом режиме раз в сутки.

Полученные данные СБД напрямую передаёт на сервер ООО «ЭСК «Энергосбережение» по двум каналам (основному и резервному).

- основной канал связи организован на базе выделенного канала сети «Internet».

Основной канал связи обеспечивает коэффициент готовности не хуже 0,95;

- резервный канал организован через сотового оператора OAO «МТС» формата GSM $900/1800~\mathrm{MTg}$.

Резервный канал связи обеспечивает скорость передачи данных не менее 9600 бит/сек. и коэффициент готовности не хуже 0,95.

Каналы связи организованы таким образом, что каждый из них обеспечивает возможность получения данных со всех счетчиков, включенных в АИИС КУЭ ООО «Выборгская лесопромышленная корпорация».

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для обеспечения единства измерений используется единое календарное время. В СОЕВ входят часы УССВ, счетчиков, УСПД, сервера.

В качестве УССВ используется устройство УСВ-2, к которому подключен GPS-приемник. УСВ-2 осуществляет прием сигналов точного времени системы GPS-приемника один раз в сутки.

Сравнение показаний часов УСВ-2 и СБД осуществляется постоянно, синхронизация осуществляется непрерывно.

Сравнение показаний часов СБД и УСПД происходит при каждом сеансе связи, синхронизация осуществляется принудительно 1 раз в сутки

Сравнение показаний часов счетчиков и УСПД происходит при каждом сеансе связи, синхронизация осуществляется принудительно 1 раз в сутки.

Программное обеспечение

В АИИС КУЭ ООО «Выборгская лесопромышленная корпорация» используется ПО «Пирамида 2000», в состав которого входят программы указанные в таблице 1. «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами «Пирамида 2000».

Таблица 1 - Идентификационные данные ПО

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентифика- ционный но- мер) ПО	Цифровой идентифи- катор ПО (контроль- ная сумма исполняе- мого кода)	Алгоритм вычисления цифрового идентификатора ПО
1	2	3	4	5
Модуль вычисления значений энергии и мощности по группам точек учета	CalcClients.dll	3	e55712d0b1b219065d6 3da949114dae4	MD5
Модуль расчета неба- ланса энер- гии/мощности	CalcLeakage.dll	3	b1959ff70be1eb17c83f7 b0f6d4a132f	MD5
Модуль вычисления значений энергии по- терь в линиях и трансформаторах	CalcLosses.dll	3	d79874d10fc2b156a0fd c27e1ca480ac	MD5
Общий модуль, со- держащий функции, используемые при вычислениях различ- ных значений и про- верке точности вы- числений	Metrology.dll	3	52e28d7b608799bb3cce a41b548d2c83	MD5
Модуль обработки значений физических величин, передавае- мых в бинарном про- токоле	ParseBin.dll	3	6f557f885b737261328c d77805bd1ba7	MD5
Модуль обработки значений физических величин, передавае- мых по протоколам семейства МЭК	ParseIEC.dll	3	48e73a9283d1e6649452 1f63d00b0d9f	MD5

Продолжение таблицы 1

1	2	3	4	5
Модуль обработки значений физических величин, передавае- мых по протоколу Modbus	ParseModbus.dll	3	c391d64271acf4055bb2 a4d3fe1f8f48	MD5
Модуль обработки значений физических величин, передавае- мых по протоколу Пирамида	ParsePiramida.dll	3	ecf532935ca1a3fd3215 049af1fd979f	MD5
Модуль формирования расчетных схем и контроля целостности данных нормативносправочной информации	SynchroNSI.dll	3	530d9b0126f7cdc23ecd 814c4eb7ca09	MD5
Модуль расчета величины рассинхронизации и значений коррекции времени	VerifyTime.dll	3	1ea5429b261fb0e2884f 5b356a1d1e75	MD5

Системы информационно-измерительные контроля и учета энергопотребления «Пирамида», включающее в себя ПО «Пирамида 2000», внесены в Госреестр № 21906-11. ПО «Пирамида 2000» аттестовано на соответствие требованиям нормативной документации, свидетельство об аттестации № АПО-209-15 от 26 октября 2011 года, выданное ФГУП «ВНИИМС».

Предел допускаемой дополнительной абсолютной погрешности по электроэнергии, получаемой за счет математической обработки измерительной информации, поступающей от счетчиков, составляет 1 единицу младшего разряда измеренного значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых электросчетчиков и измерительных трансформаторов.

Оценка влияния ПО на метрологические характеристики СИ – метрологические характеристики ИИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Состав ИИК АИИС КУЭ приведен в Таблице 2. Метрологические характеристики АИИС КУЭ приведены в Таблице 3.

Таблица 2

	таолица 2						
№ ИИК	Диспетчерское наименование ИИК	Трансформатор тока	Трансформатор напряжения	Счетчик элек- трической энергии	УСПД	Сервер	Вид электро- энергии
1	2	3	4	5	6	7	8
1.1	ПС № 513, Л Сов-1	ТБМО-110 УХЛ1 Кл. т. 0,28 К _{ТТ} 200/1 Зав. № 5631 Зав. № 5653 Зав. № 5636 Госреестр № 23256-11	НАМИ-110 УХЛ1 Кл. т. 0,2 К _{ТН} 110000/√3/100/√3 Зав. № 6732 Зав. № 6676 Зав. № 6730 Госреестр № 24218-08	А1800 Кл. т. 0,2S/0,5 Зав. № 01233123 Госреестр № 31857-11			Активная Реактивная
2.1	ПС № 513, Л Сов-2	ТБМО-110 УХЛ1 Кл. т. 0,2S К _{ТТ} 200/1 Зав. № 5642 Зав. № 5659 Зав. № 5649 Госреестр № 23256-11	НАМИ-110 УХЛ1 Кл. т. 0,2 Ктн 110000/√3/100/√3 Зав. № 6734 Зав. № 6739 Зав. № 6731 Госреестр № 24218-08	А1800 Кл. т. 0,2S/0,5 Зав. № 01233124 Госреестр № 31857-11			Активная Реактивная
1	ПС № 513, Л Ток	ТОЛ-СЭЩ 35 Кл. т. 0,5S Ктт 300/5 Зав. № 00513 Зав. № 00516 Зав. № 00517 Госреестр № 40086-08	3HOM-35-65 Kл. т. 0,5 K _{TH} 35000/√3/100/√3 3ab. № 1392080 3ab. № 1291986 3ab. № 1291985 Госреестр № 912-07	А1800 Кл. т. 0,55/1,0 Зав. № 01231814 Госресстр № 31857-11			Активная Реактивная
2	ПС № 513, Л Вец	ТОЛ-СЭЩ 35 Кл. т. 0,5S К _{ТТ} 300/5 Зав. № 00518 Зав. № 00515 Зав. № 00514 Госреестр № 40086-08	3HOM-35-65 Кл. т. 0,5 К _{ТН} 35000/√3/100/√3 Зав. № 1292049 Зав. № 1096541 Зав. № 1179762 Госреестр № 912-07	А1800 Кл. т. 0,5S/1,0 Зав. № 01231813 Госресстр № 31857-11	СИКОН С50 Зав. № 588 Госреестр № 28523-05	HP Proliant ML150 G6	Активная Реактивная
11	ПС № 513, ячейка № 16 фид. «Шко- ла»	ТОЛ-СЭЩ 10 Кл. т. 0,5S К _{ТТ} 300/5 Зав. № 35373 Зав. № 35224 Зав. № 35262 Госреестр № 32139-06	3НОЛ.06 Кл. т. 0,5 К _{ТН} 6000/√3/100/√3 Зав. № 6999 Зав. № 6746 Зав. № 6376 Госреестр № 3344-08	А1800 Кл. т. 0,5S/1,0 Зав. № 01231816 Госресстр № 31857-11			Активная Реактивная
12	ПС № 513, ячейка № 29 «РП-9 Посе- лок»	ТОЛ-СЭЩ 10 Кл. т. 0,5S К _{ТТ} 800/5 Зав. № 35502 Зав. № 35571 Зав. № 35558 Госреестр № 32139-06	3HOЛ.06 Кл. т. 0,5 К _{ТН} 6000/√3/100/√3 3ав. № 6888 3ав. № 5347 3ав. № 8632 Госреестр № 3344-08	А1800 Кл. т. 0,5S/1,0 Зав. № 01231815 Госресстр № 31857-11			Активная Реактивная
13	ПС № 513, ячейка № 43 фид. «Шко- ла»	ТОЛ-СЭЩ 10 Кл. т. 0,5S К _{ТТ} 300/5 Зав. № 35247 Зав. № 35400 Зав. № 35371 Госреестр № 32139-06	3НОЛ.06 Кл. т. 0,5 К _{ТН} 6000/√3/100/√3 Зав. № 6060 Зав. № 7339 Зав. № 8343 Госреестр № 3344-08	А1800 Кл. т. 0,55/1,0 Зав. № 01231812 Госресстр № 31857-11			Активная Реактивная

Продолжение таблицы 2

1	<u> 2</u>	3	4	5	6	7	8
14	ПС № 513, ячейка № 53 «РП-9 Посе- лок»	ТОЛ-СЭЩ 10 Кл. т. 0,5S К _{ТТ} 800/5 Зав. № 35991 Зав. № 35628 Зав. № 35655 Госреестр № 32139-06	3НОЛ.06 Кл. т. 0,5 К _{ТН} 6000/√3/100/√3 Зав. № 6237 Зав. № 4735 Зав. № 8417 Госреестр № 3344-08	А1800 Кл. т. 0,5S/1,0 Зав. № 01231810 Госресстр № 31857-11			Активная Реактивная
15	РП-5, ячейка № 20 «Поселок»	ТПЛ-СЭЩ 10 Кл. т. 0,5S К _{ТТ} 150/5 Зав. № Зав. № Зав. № Госреестр № 38202-08	НТМИ 6-66 Кл. т. 0,5 К _{ТН} 6000/100 Зав. № 5159 Госреестр № 2611-70	А1800 Кл. т. 0,55/1,0 Зав. № 01231811 Госресстр № 31857-11			Активная Реактивная
16	ТП-16 фид. «Лесная»	T-0,66 Kπ. τ. 0,5S K _{TT} 100/5 3ab. № 808664 3ab. № 808665 3ab. № 808666 Госреестр № 36382-07	-	А1800 Кл. т. 0,5S/1,0 Зав. № 01223597 Госреестр № 31857-11	СИКОН С50 Зав. № 588 Госреестр № 28523-05	HP Proliant ML150 G6	Активная Реактивная
17	ТП-17 фид. «Водопровод- ная»	ТТИ-0,66 Кл. т. 0,5S К _{ТТ} 200/5 Зав. № 13068 Зав. № 13101 Зав. № 13070 Госреестр № 28139-07	-	А1800 Кл. т. 0,55/1,0 Зав. № 01223595 Госреестр № 31857-11			Активная Реактивная
18	ТП-22 фид. «Поселок»	T-0,66 Kπ. т. 0,58 K _{TT} 300/5 3ab. № 753547 3ab. № 753545 3ab. № 753546 Госреестр № 36382-07	-	А1800 Кл. т. 0,55/1,0 Зав. № 01223589 Госреестр № 31857-11			Активная Реактивная

Таблица 3

таолица 5					
Пределы допускаемой относительной погрешности ИИК при измерении активной					
электрической энергии в рабочих условиях эксплуатации АИИС КУЭ					
Hoven MMV	200/2	$\delta_{1(2)\%}$,	$\delta_{5\%},$	$\delta_{20\%},$	$\delta_{100\%},$
Номер ИИК	cosφ	$I_{1(2)} \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{_{M3M}} < I_{_{20\%}}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100 \%} \le I_{M3M} \le I_{120 \%}$
1.1 - 2.1	1,0	±1,1	±0,7	±0,7	±0,7
	0,9	±1,1	±0,8	±0,7	±0,8
TT-0,2S; TH-0,2; Сч-0,2S	0,8	±1,3	±0,9	±0,8	±0,8
C4-0,23	0,5	±1,9	±1,3	±1,1	±1,1
1 2 11 15	1,0	±2,3	±1,6	±1,5	±1,5
1, 2, 11 - 15 TT-0,5S; TH-0,5;	0,9	±2,6	±1,9	±1,6	±1,6
Сч-0,5S	0,8	±2,9	±2,1	±1,7	±1,7
	0,5	±5,0	±3,3	±2,5	±2,5
	1,0	±2,3	±1,5	±1,4	±1,4
16	0,9	±2,6	±1,8	±1,5	±1,5
ТТ-0,5S; Сч-0,5S	0,8	±2,9	±1,9	±1,6	±1,6
	0,5	±4,9	±3,1	±2,2	±2,2
	1,0	±2,6	±2,0	±1,9	±1,9
17, 18	0,9	±3,0	±2,3	±2,1	±2,1
ТТ-0,5S; Сч-0,5S	0,8	±3,3	±2,5	±2,3	±2,3
ı	0,5	±5,3	±3,8	±3,1	±3,1

Продолжение таблицы 3

Пределы допускаемой относительной погрешности ИИК при измерении реактивной						
эл	электрической энергии в рабочих условиях эксплуатации АИИС КУЭ					
Номер ИИК	cosφ	$\delta_{1(2)\%},$ $I_{2\%} \le I_{M3M} < I_{5\%}$	$\delta_{5\%},$ $I_{5\%} \le I_{_{133M}} < I_{_{20\%}}$	$\delta_{20\%}$, $I_{20\%} \le I_{\text{M3M}} < I_{100\%}$	$\delta_{100 \%}, \ I_{100 \%} \le I_{_{H3M}} \le I_{_{120 \%}}$	
1.1 - 2.1	0,9	±2,7	±2,0	±1,7	±1,7	
TT-0,2S; TH-0,2;	0,8	±2,2	±1,8	±1,5	±1,5	
Сч-0,5	0,5	±1,9	±1,4	±1,3	±1,3	
1, 2, 11 - 15	0,9	±5,7	±4,1	±3,4	±3,4	
TT-0,5S; TH-0,5;	0,8	±4,9	±3,7	±3,1	±3,1	
Сч-1,0	0,5	±3,6	±3,0	±2,8	±2,8	
16	0,9	±5,6	±3,9	±3,2	±3,2	
TT-0,5S; Сч-1,0	0,8	±4,8	±3,5	±3,0	±3,0	
11-0,33, C4-1,0	0,5	±3,6	±2,9	±2,7	±2,7	
17, 18	0,9	±6,4	±5,0	±4,4	±4,4	
TT-0,5S; Сч-1,0	0,8	±5,6	±4,5	±4,1	±4,1	
11-0,55, C4-1,0	0,5	±4,3	±3,8	±3,6	±3,6	

Ход часов компонентов системы не превышает ±5 с.

Примечания:

- 1. Погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98·Uном до 1,02·Uном;
 - сила тока от Іном до 1,2-Іном, соѕф=0,9 инд;
 - температура окружающей среды: от 15 до 25 °C.
- 5. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети 0,9 · Uном до 1,1 · Uном,
 - сила тока от 0,01 Іном до 1,2 Іном;
 - температура окружающей среды:
 - для счетчиков электроэнергии ИИК № 1.1, 2.1, 1, 2, 11-16 от плюс 15 до плюс 25 °C;
 - для счетчиков электроэнергии ИИК № 17, 18 от минус 20 до плюс 30 °C
 - для трансформаторов тока по ГОСТ 7746-2001;
 - для трансформаторов напряжения по ГОСТ 1983-2001.
- 6. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и по ГОСТ 52425-05 в режиме измерения реактивной электроэнергии;
- 7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии Альфа A1800 среднее время наработки на отказ не менее 120000 часов:
- УСПД СИКОН С50- среднее время наработки на отказ не менее 70000 часов;
- УСВ-2 среднее время наработки на отказ не менее 35000 часов;
- ИИС «Пирамида» средний срок службы не менее 15 лет.

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 2 часа;
- для УСПД Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Tв < 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УССВ, сервере, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

- счетчик электроэнергии тридцатиминутный профиль нагрузки в двух направлениях не менее 3392 суток; при отключении питания не менее 30 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии потребленной за месяц по каждому каналу не менее 45 суток; при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средств измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4

Таблица 4

Наименование	Тип	Количество, шт.
Трансформатор тока	ТБМО-110 УХЛ1	6
Трансформатор тока	ТОЛ-СЭЩ-35-2 У2	6
Трансформатор тока	ТОЛ-СЭЩ 10-11 У2	12
Трансформатор тока	ТПЛ-СЭЩ 10	3
Трансформатор тока	ТТИ-0,66	3
Трансформатор тока	T-0,66	6
Трансформатор напряжения	НАМИ-110 УХЛ1	6
Трансформатор напряжения	3HOM-35-65	6
Трансформатор напряжения	3НОЛ.06-6 У3	12
Трансформатор напряжения	НТМИ 6-66	1
Счётчик электрической энергии	Альфа А1800	12
Контроллер УСПД	СИКОН С50	1
роутер	D-Link DI-804HV	1
Модем	«Cinterion»MC- 52i"TERMINAL	3
Сервер	HP Proliant ML150 G6	1
Источник бесперебойного питания	ИБП Eaton Evolution 1150	1
Устройство синхронизации системного времени	УССВ-2	1
Специализированное программное обеспечение	ПО «Пирамида 2000»	1
Методика поверки	МП 1355/446-2012	1
Паспорт – формуляр	411711.002.АКУ ФО	1

Поверка

осуществляется по документу МП 1355/446-2012 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Выборгская лесопромышленная корпорация». Методика поверки», утвержденному ГЦИ СИ ФБУ «Ростест-Москва» в августе 2012 г.

Средства поверки – по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003;
- − ТН по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Альфа А1800 по методике поверки ДЯИМ.411152.018 РЭ утвержденной ГЦИ СИ ФГУП ВНИИМС в 2011 г;
- УСПД СИКОН С50- по методике ВЛСТ 198.00.000 И1, утвержденной ГЦИ СИ ВНИИМС в 2004 г.;
- ИИС «Пирамида» по методике ВЛСТ 150.00.000 И1, утвержденной ГЦИ СИ ВНИИМС в 2010 г.;
- УСВ-2 по документу «ВЛСТ 237.00.000И1», утверждённым ГЦИ СИ ФГУП ВНИИФТРИ в 2009 г.;

Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS). (Госреестр № 27008-04).

Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01.

Термометр по ГОСТ 28498, диапазон измерений от минус – 40 до плюс 50°С, цена деления 1°С.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе: «Методика измерений количества электрической энергии и мощности с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии и мощности ООО «Выборгская лесопромышленная корпорация»». Свидетельство об аттестации методики (методов) измерений № 1097/446-01.00229-2012 от 20 августа 2012 года.

Нормативные документы, устанавливающие требования к АИИС КУЭ ООО «Выборгская лесопромышленная корпорация»

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6 ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.
- 7 ГОСТ Р 52425-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «ГК «Электро-Сити» 199034, г. Санкт-Петербург, ВО, 16 линия, д. 7, корпус 1, 4 этаж, оф. 1416 Тел. +7 (812) 643-66-56 Факс +7 (812) 643-66-56

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»). Аттестат аккредитации № 30010-10 от 15.03.2010 года.

117418 г. Москва, Нахимовский проспект, 31 Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11 Факс (499) 124-99-96

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.П. «	>>	2012 г.