ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контроллеры вибрационной защиты VIB3000

Назначение средства измерений

Контроллеры вибрационной защиты VIB3000 (далее по тексту – контроллеры) предназначены для измерений напряжения постоянного и переменного тока, силы постоянного тока, соответствующих значениям параметров вибрации.

Описание средства измерений

Конструктивно контроллер имеет модульное исполнение и содержит объединительную панель VIB340B, на которой устанавливаются модули расширения: модули контроля VIB310 (1 или 2 шт.), модули процессорные VIB320, VIB321 (от 1 до 6 шт.) и модуль анализа VIB330.

Контроллеры в зависимости от конфигурации оборудования обеспечивают два режима функционирования:

- режим защитного контроля (без модуля анализа VIB330);
- режим защитного контроля и анализа вибрации (с модулем анализа VIB330).

Принцип действия контроллеров в режиме защитного контроля основан на усилении электрических сигналов, поступающих первичных измерительных ОТ преобразователей $(\Pi \Pi \Pi)$, установленных объектах контроля, преобразовании на измерительных сигналов в цифровой код и обработке информации процессорными модулями, выдаче результатов измерений посредством внутренней системной шины на модули контроля, в которых в соответствии с определенными алгоритмами принимается решение о техническом состоянии объекта контроля и производится выдача установленных сигналов оповещения и/или управления в аналоговой или цифровой форме.

В режиме защитного контроля и анализа вибрации результаты измерений с процессорных модулей дополнительно поступают на модуль анализа VIB330, в котором производятся расчет диагностических параметров, предварительная обработка и передача информации посредством интерфейса Ethernet на внешний компьютер для дополнительного анализа и визуального отображения с использованием специального программного обеспечения (ПО).

Конкретная конфигурация контроллера (набор модулей расширения) выбирается потребителем исходя из общей измерительной задачи и параметров функционирования объекта контроля, необходимого числа контролируемых параметров и количества задействованных ПИП.

Конфигурация оборудования и обновление встроенного микропрограммного обеспечения производится с помощью внешнего компьютера с адаптером магистрали PROFIBUS-DP и специальным ПО «SIMATIC PDM». Посредством магистрали PROFIBUS-DP контроллеры могут быть интегрированы в информационно-управляющие системы более высоких уровней.

Модуль контроля VIB310 обеспечивает контроль параметров по отношению к предельным значениям, логическое сопряжение и вывод результатов контроля, предоставление аналоговых выходов, предоставление аналоговых выходов/реле, прием и ретрансляцию бинарной управляющей информации, соединение PROFIBUS с системами более высокого уровня.

Процессорный модуль VIB320 представляет собой устройство сопряжения контроллера с ПИП вибрации и обеспечивает питание ПИП, контроль состояния ПИП, преобразование сигналов с ПИП в цифровую форму, расчет параметров и обмен данными с

модулями контроля и анализа. Процессорный модуль VIB321 дополнительно имеет 10 сигнальных токовых входов.

Модуль анализа VIB330 обеспечивает получение оцифрованных сигналов ПИП с процессорных модулей, создание и предоставление диагностических данных измерений, создание синхронных с ротором временных рядов, создание временных рядов со сниженной частотой выборки (субдискретизацию), получение параметров и информации о состоянии всех модулей и предоставление всех параметров и временных рядов для обработки на внешний компьютер. Анализ данных, поставляемых с находящегося под наблюдением оборудования, основывается на запроектированных ранее алгоритмах.

Внешний вид контроллера с модулем анализа VIB330, двумя модулями контроля VIB310, шестью процессорными модулями VIB320/321 и место для наклейки приведены на рисунке 1.

Внешний вид модуля контроля VIB310 и место для наклейки приведены на рисунке 2. Внешний вид процессорных модулей VIB320 (VIB321) и место для наклейки приведены на рисунке 3.

Внешний вид модуля анализа VIB330 приведен на рисунке 4.

Внешний вид объединительной панели VIB340B с установленными модулями и места пломбировки от несанкционированного доступа приведены на рисунке 5. Пломбировка предусмотрена на болтах крепления модулей к объединительной панели.

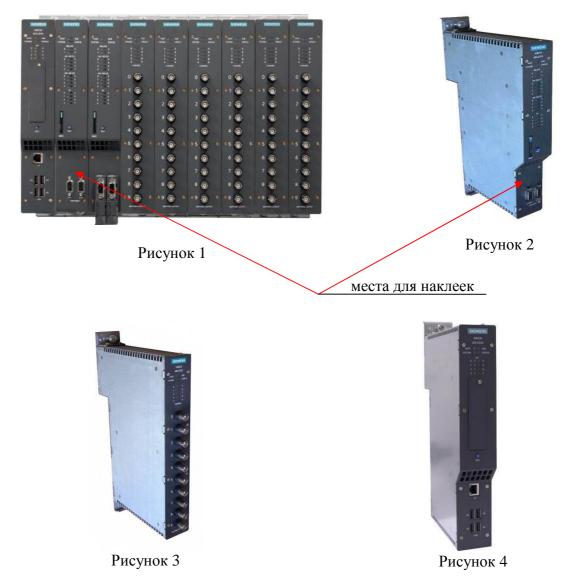


Рисунок 5

Программное обеспечение

Метрологически значимая часть ПО представляет собой ПО «SIMATIC PDM», работающее под управлением операционной системы Windows 2000/XP.

ПО «SIMATIC PDM» предназначено для формирования алгоритмов измерений и расчета параметров вибрации, конфигурации оборудования контроллеров, хранения параметров конфигурации, контроля и диагностирования оборудования, защиты настроек оборудования от несанкционированного доступа, визуализации измерительной информации.

Идентификационные данные (признаки) метрологически значимой части ПО указаны в таблице 1.

Таблица 1

,				
Наименование ПО	Идентифика	Номер версии	Цифровой идентифи-	Алгоритм
	ционное на-	(идентифика-	катор ПО	вычисления
	именование	ционный но-	(контрольная сумма	идентификатора
	ПО	мер) ПО	исполняемого кода)	ПО
ПО «SIMATIC	SIMATIC-	7.11.8	8CEC87DC32E1365B	MD-5
PDM»	Manager.exe		670E46C7A64C80F3	

Метрологически значимая часть ПО и измеренные данные достаточно защищены с помощью специальных средств защиты от преднамеренных и непреднамеренных изменений. Реализована защита ПО с помощью ключа лицензии, пароля доступа к модулям конфигурации оборудования, распределения прав доступа с использованием четырех пользовательских уровней, защищенных специальными паролями. Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Диапазоны измерений напряжения постоянного тока, Вот минус 22 до 2;
от минус 2 до 22.
Номинальная цена единицы младшего разряда, мкВ
Пределы допускаемой абсолютной погрешности измерений напряжения постоянного
тока U, B $\pm (0.01 \cdot U + 0.04)$.
Диапазоны измерений силы постоянного тока, мАот минус 22 до 1;
от минус 1 до 22.
Номинальная цена единицы младшего разряда, мА

Пределы допускаемой абсолютной погрешности измерений силы постоянного				
тока I, мА $\pm (0.01 \cdot I + 0.04)$.				
Диапазоны измерений напряжения переменного тока (амплитудных				
значений), В от минус 22 до 2;				
от минус 2 до 22.				
Диапазон рабочих частот, Γ цот $0,1$ до $5\cdot 10^4$.				
Пределы допускаемой относительной погрешности измерений напряжения				
переменного тока, $\%$				
Количество входных каналов от 1 до 60.				
Габаритные размеры (ширина х высота х длина), мм, не более:				
модулей VIB310, VIB320, VIB321 и VIB330				
панели VIB340B				
Масса, кг, не более:				
модулей VIB310, VIB320, VIB321 и VIB330				
панели VIB340B				
Напряжение электропитания постоянного тока, В от 18 до 3				
Потребляемая мощность, Вт, не более				
Рабочие условия эксплуатации:				
температура окружающего воздуха, °Сот 10 до 30;				
относительная влажность воздуха (при температуре 20 °C), %, не более80.				
атмосферное давление, кПаот 96 до 104.				

Знак утверждения типа

Знак утверждения типа средства измерений наносится на титульный лист Руководства по эксплуатации методом компьютерной графики и на лицевую часть модуля контроля VIB310 в виде голографической наклейки.

Комплектность средства измерений

Комплект поставки включает:

- объединительная панель VIB340B 1 шт.;
- процессорные модули VIB320 (VIB321) от 1 до 6 шт.;
- модули контроля VIB310 от 1 до 2 шт.;
- модуль анализа VIB330 (по требованию Заказчика) 1 шт.;
- специальное ПО SIMATIC PDM и CM500 1 CD;
- эксплуатационная документация 1 к-т;
- методика поверки 1 шт.

Поверка

осуществляется по документу МП 50925-12 «Инструкция. Контроллеры вибрационной защиты VIB3000 фирмы «Siemens AG», Германия. Методика поверки», утвержденному руководителем ГЦИ СИ ФБУ «ГНМЦ Минобороны России» 15 июня 2012 г.

Основные средства поверки:

- калибратор-вольтметр универсальный B1-28 (рег. № 10759-86): диапазон воспроизведения напряжения переменного тока от 1 мкВ до 700 В в диапазоне рабочих частот от 0,1 Γ ц до 100 к Γ ц, пределы допускаемой относительной погрешности воспроизведения напряжения переменного тока \pm 0,25 %; диапазон воспроизведения напряжения постоянного тока от 0,1 мкВ до 1000 В, пределы допускаемой относительной погрешности воспроизведения напряжения постоянного тока \pm 0,004 %; диапазон воспроизведения силы

постоянного тока от 0.1 нА до 2 А, пределы допускаемой относительной погрешности воспроизведения силы постоянного тока ± 0.02 %;

- генератор сигналов сложной формы со сверхнизким уровнем искажений DS36O (рег. № 45344-10): диапазон рабочих частот от $0,001~\Gamma$ ц до $200~\kappa$ Гц, диапазон установки напряжения переменного тока (несимметричный выход, согласованная нагрузка $600~\mathrm{Om}$) от 5 мкВ до $20~\mathrm{B}$, пределы допускаемой относительной погрешности установки напряжения \pm 1,0~%, диапазон установки постоянного напряжения смещения \pm $10~\mathrm{B}$.

Сведения о методиках (методах) измерений

Контроллеры вибрационной защиты VIB3000. Руководство по эксплуатации.

Нормативные и технические документы, устанавливающие требования к контроллерам вибрационной защиты VIB3000

Техническая документация фирмы-изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Деятельность в области осуществлении производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта, в том числе, для инструментального контроля и диагностирования технического состояния промышленного оборудования, машин и механизмов на основе измерений их вибрационных параметров.

Изготовитель

Фирма «Siemens AG», Германия Industry Sector, Siemensallee 84, D-76187 Karlsruhe

Заявитель

ООО «Маркет Гейт», г. Москва, г. Зеленоград

Юридический адрес:124460, г. Москва, г. Зеленоград, корп. 1205, и. п. 1. Почтовый адрес: 124460, г. Москва, Зеленоград, проезд 4922, д. 4 стр.2.

Телефоны: (495) 961-68-02, (495) 662-54-33; (499) 70-773-70.

Испытательный центр:

Государственный центр испытаний средств измерений Федеральное бюджетное учреждение «Главный научный метрологический центр Министерства обороны Российской Федерации» (ГЦИ СИ ФБУ «ГНМЦ Минобороны России»). Аттестат аккредитации $N \ge 30018-10$ от 05.08.2011 г.

Юридический (почтовый) адрес: 141006, г. Мытищи, Московская область, ул. Комарова, д. 13

Телефон: (495) 583-99-23, факс: (495) 583-99-48

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В.Булыгин

М.п. « » 2012 г.