ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и показателей качества сухого отбензиненного газа на территории Вынгапуровской КС (СИК СОГ)

Назначение средства измерений

Система измерений количества и показателей качества сухого отбензиненного газа на территории Вынгапуровской КС (СИК СОГ), изготовленная ЗАО НИЦ «Инкомсистем», г. Казань (далее – система измерений) предназначена для автоматизированного измерения с нормированной точностью объемного расхода и объема сухого отбензиненного газа (далее – газ), приведенных к стандартным условиям, а также показателей качества газа.

Описание средства измерений

Принцип действия системы измерений основан на использовании косвенного метода динамических измерений объемного расхода и объема газа, приведенных к стандартным условиям, по результатам измерений при рабочих условиях объемного расхода, температуры и давления газа.

Выходные сигналы ультразвукового преобразователя расхода, а также измерительных преобразователей давления и температуры газа поступают в контроллер измерительный (далее – вычислитель) в реальном масштабе времени. По полученным измерительным сигналам вычислитель по заложенному в нем программному обеспечению производит вычисление объемного расхода и объема газа, приведенных к стандартным условиям.

Система измерений представляет собой единичный экземпляр измерительной системы, спроектированной для конкретного объекта из компонентов серийного производства. Монтаж и наладка системы измерений осуществлена непосредственно на объекте эксплуатации в соответствии с проектной документацией системы измерений и эксплуатационными документами ее компонентов.

Состав и технологическая схема системы измерений обеспечивает выполнение следующих функций:

- измерение в автоматическом режиме и индикацию мгновенных значений расхода газа через каждую измерительную линию (далее ИЛ) и систему измерений в целом;
 - приведение измеренных значений расхода газа к стандартным условиям;
 - приведение объема газа к стандартным условиям;
- измерение в автоматическом режиме и индикацию мгновенных значений давления, температуры газа по каждой ИЛ;
- автоматическую сигнализацию предельных значений расхода, температуры, давления газа в каждой ИЛ;
- автоматическое измерение (периодичность от 5 до 60 минут) и индикацию компонентного состава, вычисление и индикацию плотности при стандартных условиях, теплоты сгорания и числа Воббе газа по результатам измерения компонентного состава:
 - автоматический контроль достоверности данных хроматографа;
 - автоматическая сигнализация предельных значений компонентного состава газа;
- автоматическое усреднение результатов анализов компонентного состава газа (от 3 до 50 значений);
- определение суммарного количества перекачиваемого газа в единицах объема за отдельные периоды (2 часа, смену, сутки);
- архивирование и хранение данных анализа компонентного состава газа (текущие и усредненные значения за месяц);

- возможность ввода в вычислители данных компонентного состава, определенных химико-аналитической лабораторией;
- автоматическое измерение и индикацию влажности газа в единицах ppm и г/м 3 (в диапазоне влажности газа 0,1...100 ppm),
- индикацию температуры точки росы по влаге в рабочих условиях и приведенной к контрактному давлению;
- автоматическое измерение, индикацию температуры точки росы по углеводородам (в диапазоне минус $40...0^{\circ}$ C);
 - визуальный контроль температуры и давления газа на измерительных линиях;
 - ручной отбор пробы газа из выходного коллектора;
- дистанционный контроль и управление электроприводной запорной арматурой системы измерений, в том числе переключение рабочей измерительной линии на резервную;
 - контроль и сигнализацию протечек на дренажных и факельных линиях;
- автоматический контроль и светозвуковую сигнализацию наличия пожара в блокбоксе блока измерительных линий (далее - БИЛ) и блока измерений качества (далее – БИК) (включение светозвуковой сигнализации снаружи блок-бокса и на операторской станции системы измерений);
- автоматический контроль и светозвуковую сигнализацию 20% и 50% НКПР в блок-боксе БИЛ и БИК (включение светозвуковой сигнализации снаружи блок-бокса и на операторской станции системы измерений);
- автоматическое регулирование температуры в блок-боксе. При этом должна быть предусмотрена передача следующих сигналов на операторскую станцию: о включенном состоянии системы электрообогрева блок-бокса, о снижении температуры воздуха в блок-боксе ниже $0\,^{\circ}\mathrm{C}$.
- защиту системной информации от несанкционированного доступа программными средствами (введением паролей доступа) и механическим опломбированием соответствующих конструктивов и блоков;
- хранение и отображение на операторской станции измеренных и расчетных значений контролируемых параметров;
- сохранение накопленных данных и значений коэффициентов, параметров, вводимых вручную, при отсутствии питания более 2-х часов при авариях в системе;
- возможность передачи данных с операторской станции на верхний уровень (интерфейс RS-485 по протоколу Modbus, интерфейс Ethernet);
- ведение и архивирование журнала событий системы (переключения, аварийные сигналы, сообщения об ошибках и отказах системы и ее элементов), журнала оператора, актов приема-сдачи газа;
- регистрацию и хранение всех текущих значений аналоговых и дискретных переменных ввода/вывода в течение 12 месяцев.

Система измерений состоит из измерительных каналов объемного расхода, температуры, давления, устройства обработки информации и вспомогательных компонентов, в состав которых входят следующие средства измерений: счетчик газа ультразвуковой FLOWSIC 600 (Госреестр № 36876-08), преобразователь давления измерительный Сегеbar S PMP 71 (Госреестр № 41560-09), преобразователь измерительный ТМТ 182 (Госреестр № 39840-08), термопреобразователь сопротивления платиновый ТR61 (Госреестр № 26239-06), контроллер измерительный FloBoss S600 (Госреестр № 38623-08), анализатор влажности модели 3050-OLV (Госреестр № 35147-07), анализатор температуры точки росы углеводородов модель 241 модификации 241СЕ (Госреестр № 20443-06), хроматограф газовый промышленный МісгоSAM (Госреестр № 44122-10), вычислитель расхода, количества и энергосодержания природного и попутного нефтяного газов «АКОНТ» (Госреестр № 43506-09), контроллер измерительно-вычислительный и управляющий STARDOM

(Госреестр № 27611-09), термометр биметаллический ТМ серии 55 (Госреестр № 15151-08), манометр для точных измерений МПТИ (Госреестр № 26803-06).

Алгоритмы проведения вычислений системой измерений базируются на программном обеспечении контроллера измерительного FloBoss S600 и вычислителя расхода, количества и энергосодержания природного и попутного нефтяного газов АКОНТ и предназначены для:

- измерения в автоматическом режиме, индикации и сигнализации предельных значений объема и расхода газа при рабочей температуре и давлении и приведенных к стандартным условиям через каждую ИЛ и систему измерений в целом;
 - приведения измеренного объема газа к стандартным условиям измерения;
- определения суммарного объема перекачиваемого газа через систему измерений в единицах объема за отдельные периоды (2 часа, смену, сутки);
- измерения в автоматическом режиме, индикации и сигнализации предельных значений давления газа на каждой ИЛ;
- измерения в автоматическом режиме, индикации и сигнализации предельных значений температуры газа на каждой ИЛ;
- автоматического измерения (периодичность от 5 до 60 минут), вычисления и индикации компонентного состава, вычисления и индикации плотности при стандартных условиях, теплоты сгорания (высшей и низшей) и числа Воббе (высшего, низшего) газа по результатам измерения компонентного состава;
 - автоматической сигнализации предельных значений компонентного состава газа;
- автоматического усреднения результатов анализов компонентного состава газа (от 3 до 24 значений);
- архивирования и хранения данных анализа компонентного состава газа (текущие и усредненные значения за месяц);
- автоматического измерения, вычисления и индикации температур точек росы по влаге и углеводородам, влажности газа;
 - визуального контроля температуры и давления газа по месту;
 - ручного отбора пробы газа из рабочей и резервной ИЛ;
- дистанционного контроля и управления электроприводной запорной арматурой системы измерений, в том числе переключение рабочей ИЛ на резервную;
- автоматического контроля загазованности и светозвуковой сигнализации 20% и 50% НКПР в блок-боксе системы измерений;
- автоматического пожарообнаружения и светозвуковой сигнализации пожара в блок-боксе системы измерений;
- защиты системной информации от несанкционированного доступа программными средствами (введением паролей доступа) и механическим опломбированием соответствующих конструктивов и блоков;
- хранения и отображения на операторской станции измеренных и расчетных значений контролируемых параметров;
 - формирования отчетов согласованной формы на бумажном носителе.

Программное обеспечение (далее - ПО) системы измерений обеспечивает реализацию функций системы измерений. ПО системы измерений разделено на метрологически значимую и метрологически незначимую части. Первая хранит все процедуры, функции и подпрограммы, осуществляющие регистрацию, обработку, хранение, отображение и передачу результатов измерений параметров технологического процесса, а также защиту и идентификацию ПО системы измерений. Вторая хранит все библиотеки, процедуры и

подпрограммы взаимодействия с операционной системой и периферийными устройствами

Защита ПО системы измерений от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу, осуществляется путемразделения, идентификации и защиты от несанкционированного доступа.

Идентификация ПО системы измерений осуществляется путем отображения на дисплее вычислителя или на мониторе операторской станции управления структуры идентификационных данных. Часть этой структуры, относящаяся к идентификации метрологически значимой части ПО системы измерений представляет собой хэш-сумму (контрольную сумму) по значимым частям. Идентификационные данные приведены в Таблице 1.

ПО системы измерений защищено многоуровневой системой защиты, которая предоставляет доступ только уполномоченным пользователям и одновременно определяет, какие из данных пользователь может вводить или изменять. Каждому пользователю присваивается уровень защищенного доступа и пароль. Доступ к метрологически значимой части ПО системы измерений для пользователя закрыт. При изменении установленных параметров (исходных данных) в ПО системы измерений обеспечивается подтверждение изменений, проверка изменений на соответствие требованиям реализованных алгоритмов, при этом сообщения о событиях (изменениях) записывается в журнал событий, доступный только для чтения. Данные, содержащие результаты измерений, защищены от любых искажений путем кодирования. ПО системы измерений имеет уровень защиты С согласно МИ 3286-2010.

Таблица 1 – Идентификационные данные ПО контроллера

Контроллер	Наименование ПО	Идентификацион- ное наименование ПО	Номер версии ПО	Цифровой идентификатор ПО (контрольная сумма)	Алгоритм вычисления цифрового идентифи-катора ПО
FloBoss S600	Контрольная сумма операционной сис- темы VxWorks	VERSION CONTROL FILE CSUM	6.09d	1778	CRC-16
№18362097 (основной)	Контрольная сумма файла конфигура- ции	VERSION CON- TROL CONFIG STRUCTURE	198	ff93	CRC-16
FloBoss S600	Контрольная сумма операционной сис- темы VxWorks	VERSION CONTROL FILE CSUM	6.09d	e37f	CRC-16
№18362094 (резервный)	Контрольная сумма файла конфигура- ции	VERSION CON- TROL CONFIG STRUCTURE	193	ff93	CRC-16

Метрологические и технические характеристики

Диапазон измерений объемного расхода газа, приведенного к		
стандартным условиям, м ³ /ч	от 59729 до 250000	
Диапазон измерений объемного расхода газа, в рабочих условиях,	от 720 до 3555	
M^3/H		
Диапазон измерений избыточного давления газа, МПа	от 5 до 6,5	
Диапазон измерений температуры газа, °С	от плюс 2 до плюс 25	

Пределы допускаемой относительной погрешности измерений	
объемного расхода и объема газа, приведенных к стандартным	
условиям, %:	
- при определении компонентного состава газа хроматографом	
газовым промышленным MicroSam	± 0,75
- при определении компонентного состава газа в лаборатории по	
ГОСТ 31371	± 0,8
Количество измерительных линий, шт	2
Условный диаметр измерительного трубопровода, мм	300
Температура окружающего воздуха для установленных средств	
измерений, °С	20 ± 5
Относительная влажность окружающего воздуха, %	от 30 до 80
Атмосферное давление, кПа	от 84 до 106,7
Напряжение питания, В	от 187 до 242
Частота питания, Гц	50±1
Режим работы системы измерений	непрерывный
Средний срок службы, не менее, лет	10
	· · · · · · · · · · · · · · · · · · ·

Знак утверждения типа

наносится в центре титульного листа руководства по эксплуатации системы измерений типографским способом.

Комплектность средства измерений

Единичный экземпляр системы измерений количества и показателей качества сухого отбензиненного газа на территории Вынгапуровской КС (СИК СОГ).

Методика поверки.

Руководство по эксплуатации.

Поверка

осуществляется по документу МП 50360-12 «Инструкция. ГСИ. Система измерений количества и показателей качества сухого отбензиненного газа на территории Вынгапуровской КС (СИК СОГ). Методика поверки», утвержденному ГЦИ СИ ФГУП ВНИИР 31 октября 2011 г.

В перечень основного поверочного оборудования входят:

- -калибратор многофункциональный модели ASC300-R, диапазон воспроизведения токового сигнала от 0 до 24 мA, пределы допускаемой погрешности в режиме воспроизведения токового сигнала $\pm 0.015\%$ от показания ± 2 мкA.
- -калибратор многофункциональный модели MCX-II-R, диапазон частот от 0 до 10000 Γ ц, погрешность счета импульсов ± 1 импульс.
- —термометр ртутный, диапазон измерений от 0 до 50 °C, цена деления 0.1 °C по ГОСТ 28498;
- -барометр-анероид БАММ-1, диапазон измерений от 80 до 106,7 кПа, цена деления шкалы 100 Па по ТУ25-11.15135;
- -психрометр ВИТ-1, диапазон измерений относительной влажности от 30% до 80%, цена деления термометров 0,5 °C по ТУ 25-11.1645;
 - -ПЭВМ с программным обеспечением CONFIG 600.

Допускается применять другие типы средств измерений с характеристиками, не уступающими указанным, аттестованные и поверенные в установленном порядке.

Сведения о методиках измерений

«Инструкция. ГСИ. Расход и объем сухого отбензиненного газа. Методика измерений системой измерений количества и показателей качества сухого отбензиненного газа на территории Вынгапуровской КС (СИК СОГ)», свидетельство об аттестации методики (метода) измерений № 331013-10, регистрационный номер по Федеральному реестру методик измерений ФР.1.29.2011.10484.

Нормативные документы, устанавливающие требования к системе измерений

- 1. ГОСТ Р 8.615-2005 Государственная система обеспечения единства измерений. Измерения количества извлекаемой из недр нефти и нефтяного газа. Общие метрологические и технические требования
- 2. ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения
- 3. ГОСТ Р 8.618-2006 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений объемного и массового расходов газа

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Закрытое акционерное общество Научно-инженерный центр «Инкомсистем». Адрес: 420029, Республика Татарстан, г. Казань, ул. Пионерская, д.17. ИНН 1660002574 / КПП 166001001. Тел. (843) 212-50-10. Факс (843) 212-50-20

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии». Регистрационный номер № 30006-09 г. Адрес: 420088, г. Казань, ул. 2-я Азинская, 7А. ИНН 1660007420/ КПП 166001001. Тел. (843) 272-70-62. Факс (843) $\underline{272\text{-}00\text{-}32\text{.E-mail:vniirpr@bk.ru}}$

Заместитель				
Руководителя Федерального				
агентства по техническому				
регулированию и метрологии				Е. Р. Петросян
	М.П.	*	>>	2011г.