ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакции, утвержденной приказом Росстандарта № 2273 от 30.10.2017 г.)

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Русполимет»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Русполимет» (далее - АИИС КУЭ), предназначена для измерения активной и реактивной энергии потребленной за установленные интервалы времени отдельными технологическими объектами ОАО «Русполимет» и ЗАО «Автокомпозит», а также для автоматизированного сбора, обработки, хранения, отображения и передачи полученной информации. Выходные данные системы могут быть использованы для коммерческих расчетов.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, 2х-уровневую систему.

АИИС КУЭ установлена для коммерческого учета электрической энергии в ОАО «Русполимет».

1-й уровень включает в себя трансформаторы тока (далее - TT) по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее - TH) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии типа СЭТ-4ТМ.02, СЭТ-4ТМ.03; вторичные электрические цепи; технические средства каналов передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-4.

2-й уровень включает в себя информационно-вычислительный комплекс АИИС КУЭ, созданный на основе сервера сбора данных (далее - сервер СД) и сервера базы данных (далее - сервер БД), систему обеспечения единого времени (далее - СОЕВ) на базе GPS-приемника, автоматизированные рабочие места операторов (далее - APM), технические средства приема-передачи данных и программное обеспечение (далее - ПО).

Измерительные каналы (далее - ИК) АИИС КУЭ включают в себя 1-й и 2-й уровни АИИС КУЭ ОАО «Русполимет».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков с помощью проводных линий связи поступает на сервер опроса. Далее, по запросу сервера БД, сервер опроса передает запрашиваемую информацию в сервер БД. Информация в сервере БД формируется в архивы и записывается на жесткий диск. Оба сервера подключаются к коммуникатору сети Ethernet. На верхнем уровне системы выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации-участники оптового рынка электроэнергии осуществляется в соответствии с согласованными сторонами регламентами.

Программное обеспечение (далее - ПО) АИИС КУЭ на базе программного комплекса (ПК) «Энергосфера», версия 6.4 функционирует на нескольких уровнях:

- программное обеспечение АРМ;
- программное обеспечение сервера БД.

ПО предназначено для автоматического сбора, обработки и хранения данных, получаемых со счетчиков электроэнергии, отображения полученной информации в удобном для анализа и отчетности виде, взаимодействии со смежными системами. ПО обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое ПО.

АИИС КУЭ оснащена системой обеспечения единого времени, включающей в себя GPS - приемник, принимающий сигналы точного времени от спутников глобальной системы позиционирования (GPS) и установленный на уровне ИВК. Часы сервера АИИС КУЭ синхронизированы со временем GPS - приемника, корректировка часов севера АИИС КУЭ выполняется при расхождении часов сервера и GPS - приемника на ± 1 с. Сверка показаний часов счетчиков АИИС КУЭ с часами сервера происходит при каждом опросе, при расхождении часов счетчиков с часами сервера на ± 3 с выполняется их корректировка, но не чаще чем раз в сутки. Погрешность часов компонентов системы не превышает ± 5 с.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера», в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 - Метрологические значимые модули ПО

Идентификационные признаки	Значение
Идентификационное наименование ПО	ПК «Энергосфера»
	Библиотека pso_metr.dll
Номер версии (идентификационный номер) ПО	1.1.1.1
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового идентификатора ПО	MD5

Комплекс программно-технический измерительный «ЭКОМ», включающий в себя программный комплекс (ПК) «Энергосфера», внесен в Федеральный информационный фонд средств измерений под № 19542-05.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-го уровня измерительных каналов (ИК) приведен в табл. 2, метрологические характеристики ИК в табл. 3 - 4.

Таблица 2 - Состав 1-го уровня ИК

Tac	блица 2 - Состав 1-го ур	овня ИК					
K		Из	Измерительные компоненты				
Номер ИК	Наименование объекта	TT	ТН	Счетчик	Вид Электро- энергии		
1	2	3	4	5	6		
1	ОАО "Русполимет", ГПП (110/6) "КМЗ", ЗРУ-6 кВ, 3 сш 6 кВ, яч. 41	ТЛШ-10УЗ Рег. № 11077-07 Кл т. 0,5 2000/5	НАМИТ-10-2 УХЛ2 Рег. № 16687-07 Кл т. 0,5 6000/100	СЭТ-4ТМ.02.2 Рег. № 20175-01 Кл т.0,5S/0,5	активная, реактивная		
2	ОАО "Русполимет", ГПП (110/6) "КМЗ", ЗРУ-6 кВ, 4 сш 6 кВ, яч. 40	ТЛШ-10УЗ Рег. № 11077-07 Кл т. 0,5 2000/5	НАМИТ-10-2 УХЛ2 Рег. № 16687-07 Кл т. 0,5 6000/100	СЭТ-4ТМ.02.2 Рег. № 20175-01 Кл т.0,5S/0,5	активная, реактивная		
3	ОАО "Русполимет", ГПП (110/6) "КМЗ", ЗРУ-6 кВ, сш 0,4 кВ, яч. 43	ТТН Рег. № 41260-09 Кл т. 0,5 50/5	-	СЭТ-4ТМ.02.2 Рег. № 20175-01 Кл т.0,5S/1,0	активная, реактивная		
4	ОАО "Русполимет", ГПП (110/6) "КМЗ", ЗРУ-6 кВ, 1 сш 6 кВ, яч. 13	ТЛШ-10УЗ Рег. № 11077-07 Кл т. 0,5 2000/5	НАМИТ-10-2 УХЛ2 Рег. № 16687-07 Кл т. 0,5 6000/100	СЭТ-4ТМ.02.2 Рег. № 20175-01 Кл т.0,5S/0,5	активная, реактивная		
5	ОАО "Русполимет", ГПП (110/6) "КМЗ", ЗРУ-6 кВ, 2 сш 6 кВ, яч. 12	ТЛШ-10У3 Рег. № 11077-07 Кл т. 0,5 2000/5	НАМИТ-10-2 УХЛ2 Рег. № 16687-07 Кл т. 0,5 6000/100	СЭТ-4ТМ.02.2 Рег. № 20175-01 Кл т.0,5S/0,5	активная, реактивная		
6	ОАО "Русполимет", ГПП (110/6) "КМЗ", ЗРУ-6 кВ, сш 0,4 кВ, яч. 17	ТТН Рег. № 41260-09 Кл т. 0,5 50/5	-	СЭТ-4ТМ.02.2 Рег. № 20175-01 Кл т.0,5S/1,0	активная, реактивная		
7	ОАО "Русполимет", РП-3, ЗРУ-6 кВ, 1 сш, Ф-611	ТПОЛ-10 Рег. № 1261-08 Кл т. 0,5S 1000/5	НАМИТ-10-2 УХЛ2 Рег. № 16687-07 Кл т. 0,5 6000/100	СЭТ-4ТМ.02.2 Рег. № 20175-01 Кл т.0,5S/0,5	активная, реактивная		
8	ПС "Выкса" (110/6), ЗРУ-6 кВ, 1 сш, Ф-604	ТПОФ-10 Рег. № 518-50 Кл т. 0,5 750/5	НАМИ-10-95 Рег. № 20186-05 Кл т. 0,5 6000/100	СЭТ-4ТМ.03.01 Рег. № 27524-04 Кл т.0,5S/1,0	активная, реактивная		
9	ПС "Выкса" (110/6), ЗРУ-6 кВ, 1 сш, Ф-605	ТПОФ-10 Рег. № 518-50 Кл т. 0,5 750/5	НАМИ-10-95 Рег. № 20186-05 Кл т. 0,5 6000/100	СЭТ-4ТМ.03.01 Рег. № 27524-04 Кл т.0,5S/1,0	активная, реактивная		

Продолжение таблицы 2

1	2	3	4	5	6
10	ПС "Выкса" (110/6), ЗРУ-6 кВ, 1 сш, Ф-607	ТПК-10 Рег. № 22944-07 Кл т. 0,5 600/5 ТПОЛ-10 Рег. № 1261-59 Кл т. 0,5 600/5	НАМИ-10-95 Рег. № 20186-05 Кл т. 0,5 6000/100	СЭТ-4ТМ.03М Per. № 36697-12 Кл т.0,2S/0,5	активная, реактивная
11	ПС "Выкса" (110/6), ЗРУ-6 кВ, 1 сш, Ф-608	ТПК-10 Рег. № 22944-07 Кл т. 0,5S 800/5	НАМИ-10-95 Рег. № 20186-05 Кл т. 0,5 6000/100	СЭТ- 4ТМ.03М.01 Рег. № 36697-12 Кл т.0,5S/1,0	активная, реактивная
12	ПС "Выкса" (110/6), ЗРУ-6 кВ, 1 сш, Ф-616	ТПОЛ-10 Рег. № 1261-08 Кл т. 0,5 1000/5	НАМИ-10-95 Рег. № 20186-05 Кл т. 0,5 6000/100	СЭТ-4ТМ.03.01 Рег. № 27524-04 Кл т.0,5S/1,0	активная, реактивная
13	ПС "Выкса" (110/6), ЗРУ-6 кВ, 1 сш, Ф-618	ТПОЛ-10 Рег. № 1261-08 Кл т. 0,5 1000/5	НАМИ-10-95 Рег. № 20186-05 Кл т. 0,5 6000/100	СЭТ-4ТМ.03.01 Рег. № 27524-04 Кл т.0,5S/1,0	активная, реактивная

Таблица 3 - Метрологические характеристики ИК АИИС КУЭ (активная энергия)

		Пределы относительной погрешности ИК							
Номер ИК	Диапазон значений силы тока		Основная относительная погрешность ИК, (±d), %		Относительная погрешность ИК в рабочих условиях эксплуатации, (±d), %				
		cos j = 1,0	$ \cos \mathbf{j} = 0.87 $	$\cos j = 0.8$	$\cos j = 0.5$	$\cos j = 1,0$	$ \cos \mathbf{j} = 0.87 $	$\cos j = 0.8$	$\cos j = 0.5$
1	2	3	4	5	6	7	8	9	10
	$0.05 \text{IH}_1 \mathfrak{L} \text{I}_1 < 0.2 \text{IH}_1$	1,8	2,5	2,9	5,5	2,3	2,9	3,3	5,8
1, 2, 4, 5	$0.2 \text{IH}_1 \ \text{\pounds} \ \text{I}_1 < \text{IH}_1$	1,2	1,5	1,7	3,0	1,8	2,1	2,2	3,5
	IH₁ £ I₁ £ 1,2IH₁	1,0	1,2	1,3	2,3	1,7	1,9	2,0	2,8
	$0.05 I_{H_1} $ £ $I_1 < 0.2 I_{H_1}$	1,7	2,4	2,8	5,4	2,2	2,8	3,2	5,6
3, 6	$0,2I_{H_1} \ \mathfrak{L} \ I_1 < I_{H_1}$	1,0	1,3	1,5	2,7	1,7	1,9	2,1	3,2
	Iн₁ £ I₁ £ 1,2Iн₁	0,8	1,0	1,1	1,9	1,6	1,7	1,8	2,5
	$0.02I_{\rm H_1} \ {\rm \pounds} \ I_1 < 0.05I_{\rm H_1}$	1,9	2,4	2,7	4,9	2,3	2,8	3,1	5,2
7	$0.05 \text{IH}_1 \ \text{\pounds} \ \text{I}_1 < 0.2 \text{IH}_1$	1,2	1,5	1,7	3,1	1,8	2,1	2,3	3,6
,	$0.2I_{H_1} \mathfrak{L} I_1 < I_{H_1}$	1,0	1,2	1,3	2,3	1,7	1,9	2,0	2,8
	Iн₁ £ I₁ £ 1,2Iн₁	1,0	1,2	1,3	2,3	1,7	1,9	2,0	2,8
8, 9, 10,	$0.05 \text{IH}_1 \ \text{\pounds} \ \text{I}_1 < 0.2 \text{IH}_1$	1,8	2,5	2,9	5,5	2,3	2,9	3,3	5,8
12, 13	$0,2I_{\rm H_1} \ {\rm \pounds} \ I_1 < I_{\rm H_1}$	1,2	1,5	1,7	3,0	1,8	2,1	2,2	3,5
12, 13	Iн₁ £ I₁ £ 1,2Iн₁	1,0	1,2	1,3	2,3	1,7	1,9	2,0	2,8
	$0.02 \text{IH}_1 \mathfrak{L} I_1 < 0.05 \text{IH}_1$	1,9	2,4	2,7	4,9	2,3	2,8	3,1	5,2
11	$0.05 \text{IH}_1 \ \text{\pounds} \ \text{I}_1 < 0.2 \text{IH}_1$	1,2	1,5	1,7	3,1	1,8	2,1	2,3	3,6
11	$0.2 \text{IH}_1 \mathfrak{L} \text{I}_1 < \text{IH}_1$	1,0	1,2	1,3	2,3	1,7	1,9	2,0	2,8
	Iн ₁ £ I ₁ £ 1,2Iн ₁	1,0	1,2	1,3	2,3	1,7	1,9	2,0	2,8

Таблица 4 - Метрологические характеристики ИК АИИС КУЭ (реактивная энергия)

Таолица 4 - WICI	рологические характеристики	III AIIII	$\frac{C}{N}$	Сактивп	ая эпсрі п	.н)	-	
		Пределы относительной погрешности ИК						
		Основная			Относительная			
		OTH	относительная			погрешность ИК		
	Диапазон значений	погреш	погрешность ИК, (±d),			в рабочих условиях		
Номер ИК	силы тока		%			эксплуатации, (±d), %		
		$\cos j =$	•	$\cos j =$	$\cos j =$	$\cos j =$	•	
		0,87	0,8	0,5	0,87	0,8	0,5	
					$(\sin j =$	$(\sin j =$		
		0,5)	0,6)	0,87)	0,5)	0,6)	0,87)	
1	2	3	4	5	6	7	8	
	$0.05 I_{\rm H_1} \ {\mathfrak L} \ I_1 < 0.2 I_{\rm H_1}$	5,6	4,4	2,6	5,7	4,5	2,7	
1, 2, 4, 5	$0.2I_{\rm H_1} \ {\rm \pounds} \ I_1 < I_{\rm H_1}$	3,0	2,4	1,5	3,1	2,5	1,7	
	IH₁ £ I₁ £ 1,2IH1	2,3	1,8	1,2	2,4	2,0	1,4	
	$0.05 I_{H_1} $ £ $I_1 < 0.2 I_{H_1}$	5,7	4,5	2,8	6,1	5,0	3,4	
3, 6	$0.2 I_{H_1} \ \mathfrak{L} \ I_1 < I_{H_1}$	2,9	2,4	1,6	3,4	2,9	2,3	
	Iн₁ £ I₁ £ 1,2Iн₁	2,1	1,8	1,3	2,6	2,4	2,1	
	$0.02I_{\rm H_1} \ {\rm \pounds} \ I_1 < 0.05I_{\rm H_1}$	5,1	4,1	2,5	5,4	4,4	2,8	
7	$0.05I_{H_1} $ £ $I_1 < 0.2I_{H_1}$	3,1	2,5	1,6	3,3	2,7	1,8	
/	$0.2 I_{H_1} \ \mathfrak{L} \ I_1 < I_{H_1}$	2,3	1,8	1,2	2,4	2,0	1,4	
	Ін ₁ £ І ₁ £ 1,2Ін ₁	2,3	1,8	1,2	2,4	2,0	1,4	
	$0.05 I_{H_1} \ \mathfrak{L} \ I_1 < 0.2 I_{H_1}$	5,8	4,7	2,9	6,3	5,1	3,5	
8, 9, 10, 12, 13	$0.2 \text{I}_{\text{H}_1} \mathfrak{L} \text{I}_1 < \text{I}_{\text{H}_1}$	3,2	2,6	1,8	3,6	3,1	2,4	
	Ін ₁ £ І ₁ £ 1,2Ін ₁	2,5	2,1	1,5	2,9	2,6	2,2	
11	$0.02 \mathrm{Ih}_1 \ \mathfrak{L} \ \mathrm{I}_1 < 0.05 \mathrm{Ih}_1$	6,0	4,9	3,2	7,0	5,8	4,2	
	$0.05 \text{IH}_1 \ \mathfrak{L} \ \text{I}_1 < 0.2 \text{IH}_1$	3,6	3,0	2,1	4,2	3,6	2,8	
	$0.2 \mathrm{I}_{\mathrm{H}_{1}} \ \mathbf{\pounds} \ \mathrm{I}_{1} < \mathrm{I}_{\mathrm{H}_{1}}$	2,5	2,1	1,5	3,0	2,7	2,2	
	Iн₁ £ I₁ £ 1,2Iн₁	2,5	2,1	1,5	2,9	2,6	2,2	

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 3. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии по ГОСТ 30206-94 в режиме измерения активной электроэнергии и по ГОСТ 26035-83 в режиме измерения реактивной электроэнергии.
- 4. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 5 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Замена оформляется актом в установленном на ОАО «Русполимет» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 5.

Таблица 5 - Основные технические характеристики ИК

Наименорание уарактеристики	Значение
Наименование характеристики Количество измерительных каналов	13
	13
Нормальные условия:	
параметры сети: - напряжение, % от U _{ном}	от 98 до 102
- напряжение, % от С _{ном} - ток, % от І _{ном}	
- ток, 70 от 1 _{ном} - частота, Гц	от 100×до 120
	от 49,85 до 50,15
- коэффициент мощности соsj (sinj)	0,87 (0,5)
- температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	00 110
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 (5) до 120
- коэффициент мощности cosj (sinj)	от 0,5 до 1,0
	(от 0,5 до 0,87)
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +50
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от 0 до +40
- температура окружающей среды в месте расположения	
аппаратуры передачи и обработки данных, °С	от +5 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчиков СЭТ-4ТМ.02.2, СЭТ-4ТМ.03.01	90000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	95200
- среднее время восстановления работоспособности, ч	1
r, , , , , , , , , , , , , , , , , , ,	
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	35
- при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Оценка надежности АИИС КУЭ в целом:

 $K_{\Gamma_AИИC} = 0,983$ - коэффициент готовности;

 $T_{O\ MK}(AИИC) = 6804\ ч$ - среднее время наработки на отказ.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
- электросчетчика;
- сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Русполимет» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность АИИС КУЭ

Наименование	Тип	Количество, шт.
	ТЛШ-10УЗ	8
	TTH	6
Измерительные трансформаторы тока	ТПОЛ-10	8
	ТПОФ-10	4
	ТПК-10	2
Измерительные трансформаторы	НАМИТ-10-2 УХЛ2	5
напряжения	НАМИ-10-95	1
Счетчики электрической энергии	CЭT-4TM.02.2	7
многофункциональные	CЭT-4TM.03.01	6
GPS - приемник	-	1
Аппаратный сервер	-	1
ПК «Энергосфера»	-	1
Автоматизированные рабочие		1
места персонала (АРМы)	_	1
Методика поверки	МП 49947-12 с изменением № 1	1
Руководство по эксплуатации	-	1
Паспорт-формуляр	-	1

Поверка

осуществляется по документу МП 49947-12 с изменением № 1 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Русполимет». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» «14» сентября 2017 г.

Основные средства поверки:

- TT по ГОСТ 8.217-2003 «Государственная система обеспечения единства измерений. Трансформаторы тока. Методика поверки»;
- ТН по МИ 2845-2003 «ГСИ Измерительные трансформаторы напряжения $6\sqrt{3}$...35 кВ. Методика проверки на месте эксплуатации» и/или по ГОСТ 8.216-88 «Государственная система обеспечения единства измерений. Трансформаторы напряжения. Методика поверки»;
- Счетчики типа СЭТ-4ТМ.02 в соответствии с документом «Счетчики активной и реактивной электрической энергии переменного тока, статические, многофункциональные СЭТ-4ТМ.02. Руководство по эксплуатации. ИЛГШ.411152.087РЭ1» раздел «Методика поверки». Методика поверки согласована с руководителем ГЦИ СИ Нижегородского ЦСМ;
- Счетчики типа СЭТ-4ТМ.03 в соответствии с методикой поверки ИЛГШ.411152.124 РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.124 РЭ. Методика поверки согласована с руководителем ГЦИ СИ «Нижегородский ЦСМ» 10 сентября 2004 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS)), номер в Государственном реестре средств измерений № 27008-04;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Русполимет»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «АРСТЭМ-ЭнергоТрейд» (ООО «АРСТЭМ-ЭнергоТрейд»)

ИНН 6672185635

Юридический адрес: 620026, г. Екатеринбург, ул. Мамина-Сибиряка, 126 Адрес: 620075 г. Екатеринбург, ул. Красноармейская, 26, ул. Белинского, 9

Телефон: +7(343) 310-70-80 Факс: +7(343) 310-32-18 E-mail: office@arstm.ru

Web-сайт: http://www.eg-arstem.ru/

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика»

(ООО «Стройэнергетика»)

Адрес: 129337, г. Москва, ул. Красная Сосна, д. 20, стр. 1, комн. 4

Телефон: +7(926) 786-90-40

E-mail: Stroyenergetika@gmail.com

Испытательный центр

ГЦИ СИ Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ГЦИ СИ ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7(495) 437-55-77 Факс: +7(495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.