ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Калибраторы-измерители напряжения и силы тока 6430

Назначение средства измерений

Калибраторы-измерители напряжения и силы тока 6430 предназначены для воспроизведения и измерения напряжения и силы малых постоянных токов, а также измерения больших сопротивлений.

Описание средства измерений

Принцип действия калибраторов-измерителей напряжения и силы тока 6430 основан на цифро-аналоговом преобразовании заданного в цифровом коде значения напряжения или силы тока в выходную аналоговую величину и аналого-цифровом преобразовании входного напряжения или силы тока в цифровой код, с применением высокоомных согласующих входных и выходных устройств. Измерение сопротивления реализуется в режиме воспроизведения силы тока (напряжения) и измерения напряжения (силы тока). Внешний модуль предварительного усилителя тока подключается к основному блоку и служит для измерения и воспроизведения силы тока на нижних пределах.

Управление режимами работы производится с лицевой панели либо дистанционно через интерфейсы RS-232, IEEE-488. Параметры установленных режимов работы, значения воспроизводимых и измеряемых величин отображаются на монохромном жидкокристаллическом дисплее.

Калибраторы-измерители напряжения и силы тока 6430 выполнены в виде моноблока в настольном исполнении. Модуль предварительного усилителя тока размещен в экранированном металлическом корпусе.

Пломбирование от несанкционированного доступа производится нанесением на заводеизготовителе или в авторизованном сервисном центре специальной краски под винт на задней панели. Знак поверки в виде наклейки размещается в середине боковой панели.

Общий вид калибраторов-измерителей напряжения и силы тока 6430 с предварительным усилителем тока показан на фотографии 1, задняя панель – на фотографии 2.

По техническим требованиям калибраторы-измерители напряжения и силы тока 6430 соответствуют ГОСТ 22261-94, по требованиям к климатическим и механическим воздействиям – группе 2 ГОСТ 22261-94 с диапазоном рабочих температур от 0 до +40 °C.

Программное обеспечение

Программное обеспечение, установленное на встроенный микроконтроллер, по структуре является целостным и служит для управления режимами работы, задания диапазонов воспроизведения и измерения, выполнения математических функций обработки измерительной информации, усреднений с различными режимами выборки, и прочие сервисные функции. Калибровочные константы хранятся в энергонезависимой памяти микроконтроллера, вход в калибровочный режим защищен от неавторизованного доступа паролем. Идентификационные данные и сведения о защите программного обеспечения представлены в таблице ниже.

идентификационное наименование про- граммного обеспечения	6430 Firmware
номер версии программного обеспечения	С28 и выше
класс риска (уровень защиты)	класс риска A по WELMEC 7.2 для категории <i>Р</i> уровень защиты A по МИ 3286-2010

Метрологические и технические характеристики

	T = 1
пределы воспроизведения и измерения напряжения	от 200 мВ до 200 В ¹
пределы воспроизведения и измерения силы тока	от 1 пА до 100 мА ¹
максимальная выходная мощность	2,2 Bt
пределы допускаемой основной погрешности ΔU_{0S} воспроиз-	
ведения напряжения U при температуре 23 ± 5 °C	
на пределах 200 мВ; 2 В	$\pm (2 \cdot 10^{-4} \text{ U} + 600 \text{ мкВ})$
на пределе 20 В	$\pm (2.10^{-4} \text{ U} + 2.4 \text{ MB})$
на пределе 200 В	$\pm (2 \cdot 10^{-4} \text{ U} + 24 \text{ MB})$
пределы допускаемой основной погрешности ΔI_{0S} воспроиз-	
ведения силы тока I при температуре 23 ± 5 °C	
основной блок без предварительного усилителя тока	
на пределе 1 мкА	$\pm (3.5 \cdot 10^{-4} \text{ I} + 600 \text{ pA})$
на пределе 10 мкА	$\pm (3,3\cdot10^{-4} \text{ I} + 2 \text{ HA})$
на пределе 100 мкА	$\pm (3,1\cdot10^{-4} \text{ I} + 20 \text{ HA})$
на пределе 1 мА	$\pm (3,4\cdot10^{-4} \text{ I} + 200 \text{ HA})$
на пределе 10 мА	$\pm (4.5 \cdot 10^{-3} \text{ I} + 2 \text{ MKA})$
на пределе 100 мА	$\pm (6.6 \cdot 10^{-3} \text{ I} + 20 \text{ MKA})$
с предварительным усилителем тока	
на пределе 1 пА	$\pm (1.10^{-2} \text{ I} + 10 \phi \text{A})$
на пределе 10 пА	$\pm (5.10^{-3} \text{ I} + 30 \text{ ΦA})$
на пределе 100 пА	$\pm (1.5 \cdot 10^{-3} \text{ I} + 40 \phi \text{A})$
на пределе 1 нА	$\pm (5.10^{-4} \text{ I} + 200 \text{фA})$
на пределе 10 нА	$\pm (5.10^{-4} \text{ I} + 2 \text{ mA})$
на пределе 100 нА	$\pm (5.10^{-4} \text{ I} + 20 \text{ mA})$
на пределе 1 мкА	$\pm (5.10^{-4} \text{ I} + 300 \text{ mA})$
на пределе 10 мкА	$\pm (5.10^{-4} \text{ I} + 2 \text{ HA})$
на пределе 100 мкА	$\pm (3,1\cdot 10^{-4} \text{ I} + 20 \text{ HA})$
на пределе 1 мА	$\pm (3,4\cdot 10^{-4} \text{ I} + 200 \text{ HA})$
на пределе 10 мА	$\pm (4.5 \cdot 10^{-3} \text{ I} + 2 \text{ MKA})$
на пределе 100 мА	$\pm (6.6 \cdot 10^{-3} \text{ I} + 20 \text{ MKA})$

Примечание 1. С шагом, кратным 10.

	Tipinite famile 1. C marom, Rpatilbini 10.	
пределы допускаемой основной погрешности ΔU_{0M} измерения		
	напряжения U при температуре 23 ± 5 °C	
	на пределах 200 мВ; 2 В	$\pm (1,2\cdot 10^{-4} \text{ U} + 350 \text{ мкВ})$
	на пределе 20 В	$\pm (1,5 \cdot 10^{-4} \text{ U} + 1,5 \text{ MB})$
	на пределе 200 В	$\pm (1,5 \cdot 10^{-4} \text{ U} + 10 \text{ MB})$

пределы допускаемой основной погрешности ΔI_{0M} измерения		
силы тока I при температуре 23 ± 5 °C		
на пределе 1 пА	$\pm (1.10^{-2} I + 7 \Phi A)$	
на пределе 10 пА	$\pm (5.10^{-3} \text{ I} + 7 \Phi \text{A})$	
на пределе 100 пА	$\pm (1.5 \cdot 10^{-3} \text{ I} + 30 \text{ ϕA})$	
на пределе 1 нА	$\pm (5.10^{-4} \text{ I} + 200 \text{фA})$	
на пределе 10 нА	$\pm (5.10^{-4} \text{ I} + 2 \text{ mA})$	
на пределе 100 нА	$\pm (5.10^{-4} \text{ I} + 20 \text{ mA})$	
на пределе 1 мкА	$\pm (5.10^{-4} \text{ I} + 300 \text{ nA})$	
на пределе 10 мкА	$\pm (5.10^{-4} \text{ I} + 2 \text{ HA})$	
на пределе 100 мкА	$\pm (2.5 \cdot 10^{-4} \text{ I} + 6 \text{ HA})$	
на пределе 1 мА	$\pm (2,7\cdot10^{-4} \text{ I} + 60 \text{ HA})$	
на пределе 10 мА	$\pm (3,5\cdot10^{-3} \text{ I} + 600 \text{ HA})$	
на пределе 100 мА	$\pm (5,5\cdot 10^{-3} \text{ I} + 6 \text{ MKA})$	
пределы допускаемой основной погрешности ΔR_0 измерения		
сопротивления R при температуре 23 ± 5 °C		
"Normal"	$\Delta R_0 = R \cdot (\Delta I_{0S} / I + \Delta U_{0M} / U)$	
"Enhanced"	$\Delta R_0 = R \cdot (\Delta I_{0M} / I + \Delta U_{0M} / U)$	
пределы допускаемой дополнительной погрешности воспро-		
изведения и измерения величин в интервалах температур от 0		
до 18 °C и от 28 до 40 °C	\pm 0,15 % Δ_0 / °C	
габаритные размеры		
ширина	213 мм	
высота	89 мм	
глубина	370 мм	
масса, не более	5,9 кг	
параметры электропитания		
напряжение и частота сети	220 В; 50 Гц	
потребляемая мощность, не более	100 B·A	
рабочие условия применения		
температура окружающей среды	от 0 до 40 °C	
относительная влажность воздуха при температуре	до 60 %	
до 35 °C		
предельная высота над уровнем моря	2000 м	
температура хранения и транспортирования	от – 25 до + 65 °C	
электромагнитная совместимость	по ГОСТ Р 51522-99	
безопасность	по ГОСТ Р 52319-2005	

Знак утверждения типа

Знак утверждения типа наносится в левой стороне задней панели корпуса в виде наклейки и на титульный лист краткого руководства пользователя 6430-900-01R.

Комплектность средства измерений

наименование и обозначение	количество
Калибратор-измеритель напряжения и силы тока 6430	1 шт.
Кабель сетевой	1 шт.
Кабель измерительный триаксиальный 6430-322-1В	1 шт.
Кабель высоковольтный 8607	1 шт.
Кабель соединительный для модуля предусилителя СА-176-1Е	1 шт.
Адаптер СА-186-1В	1 шт.
Короткозамыкатель САР-31	2 шт.

наименование и обозначение	количество
Компакт-диск CD с документацией и программным обеспечением	1 шт.
Калибраторы-измерители напряжения и силы тока 6430. Краткое руководство пользователя. 6430-901-01R	1 шт.
Калибраторы-измерители напряжения и силы тока 6430. Методика поверки. KI-6430-2012	1 шт.

Поверка

осуществляется по документу KI-6430-2012 «Калибраторы-измерители напряжения и силы тока 6430. Методика поверки», утвержденному руководителем ГЦИ СИ «Росиспытания» $20.03.2012~\Gamma$.

Средства поверки:

наименование и требования к	рекомендуемое средство поверки и его		
метрологическим характеристикам	метрологические характеристики		
вольтметр постоянного напряжения относи-	мультиметр Agilent 3458A		
тельная погрешность измерения постоянно-	относительная погрешность измерения посто-		
го напряжения	янного напряжения		
100; 200 мВ не более ± 0,005 %	100; 200 мВ не более ± 0,0012 %		
1; 2 В не более ± 0,005 %	1; 2 В не более ± 0,001 %		
10; 20; 200 В не более ± 0,02 %	10; 20; 200 В не более ± 0,0014 %		
измеритель силы постоянного тока	мультиметр Agilent 3458A		
относительная погрешность измерения силы	относительная погрешность измерения силы		
постоянного тока	постоянного тока		
1; 10; 100 мкA; 1; 10 мA не более ± 0,02 %	1 мкА не более ± 0,0065 %		
100 мА не более ± 0,03 %	10; 100 мкА; 1; 10 мА не более ± 0,0035 %		
3,00 //	100 мА не более ± 0,0045 %		
мера сопротивления 100 МОм	мера электрического сопротивления Р4033		
относительная погрешность сопротивления	номинальное значение 100 МОм;		
не более ± 0,01 %	класс точности 0,005		
мера сопротивления 1 ГОм	катушка электрического сопротивления		
относительная погрешность сопротивления	P4030-M1		
не более ± 0,01 %	номинальное значение 1 ГОм;		
	класс точности 0,01		
мера сопротивления 10 ГОм	мера-имитатор Р40115		
относительная погрешность сопротивления	номинальное значение 1 ГОм;		
не более ± 0,1 %	класс точности 0,05		
мера сопротивления 100 ГОм	мера-имитатор Р4085-М1		
относительная погрешность сопротивления	относительная погрешность сопротивления		
не более ± 0,1 %	100 ГОм не более ± 0,1 %		

Сведения о методиках (методах) измерений

Методы измерений изложены в руководстве пользователя 6430-901-01R.

Нормативные документы, устанавливающие требования к калибраторам-измерителям напряжения и силы тока 6430

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 8.022-91. Государственная система обеспечения единства измерений. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне $1 \cdot 10^{-16} \div 30~\mathrm{A}$.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции установленным законодательством Российской Федерации обязательным требованиям.

Выполнение работ и оказание услуг по обеспечению единства измерений.

Изготовитель

Компания "Keithley Instruments, Inc.", США. 28775 Aurora Road, Cleveland Ohio, USA. тел./факс 1-888-534-8453, e-mail <u>info@keithley.com</u>.

Заявитель

Закрытое акционерное общество «АКТИ-Мастер» (ЗАО «АКТИ-Мастер») юридический адрес: 125047, Москва, ул. Александра Невского, д. 19/25, стр. 1 тел./факс (499)154-74-86

Испытательный центр

Государственный центр испытаний средств измерений «РОСИСПЫТАНИЯ» 103001, г. Москва, Гранатный пер., 4; тел. (495)236-41-71, факс (499)230-36-25 Аттестат аккредитации № 30123-10

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии				Е.Р. Петросян
	м.П.	«	»	2012 г.