ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Расходомеры-счетчики электромагнитные UniMag

Назначение средства измерений

Расходомеры-счетчики электромагнитные UniMag (модели M, DT, DP, DL, DM, DK), далее – расходомеры, предназначены для измерений объемного расхода и объема различных электропроводящих жидкостей.

Описание средства измерений

Принцип действия расходомеров основан на явлении наведения электродвижущей силы в движущемся в магнитном поле проводнике - измеряемой среде. В соответствии с законом электромагнитной индукции Фарадея при перемещении проводника в магнитном поле возникает электродвижущая сила, величина которой пропорциональна скорости движения проводника.

Конструктивно расходомер состоит из первичного преобразователя расхода и электронного блока 4411е, соединенных между собой кабелями.

Первичный преобразователь расхода выполнен в виде отрезка трубопровода, с футеровкой внутренней поверхности или без нее, с фланцами или без (под приварку) для присоединения к трубопроводу и фланцевыми патрубками для установки одного или нескольких сенсоров и установленной на трубе клеммной коробки. Он представляет собой монолитную конструкцию цилиндрической формы, включающую индуктор, заземляющие и измерительные электроды. Электропроводящая среда, в которой перпендикулярно направлению потока генерируется магнитное поле, протекает внутри трубы первичного преобразователя. Возникающее в измеряемой среде напряжение снимается электродами. Величина измеряемого напряжения пропорциональна магнитной индукции, расстоянию между электродами, а также средней скорости потока.

Для измерения жидкостей с низкой электропроводимостью (конденсат водяного пара, деминерализованная и деионизованная вода) используется предусилитель, размещаемый в клеммной коробке первичного преобразователя расхода. Учитывая, что магнитная индукция и расстояние между электродами являются постоянными величинами, средняя скорость потока измеряемой среды, а значит и объемный расход, пропорциональны измеряемому напряжению. Встроенный измеритель магнитного поля допускает наличие в измеряемой среде магнитных частип.

Электронный блок, входящий в состав расходомера, измеряет индуцированное напряжение, вычисляет объемный расход и преобразует его в стандартизированные выходные аналоговые и цифровые сигналы.

Электронный блок расходомера выполнен в герметичном корпусе и соединяется с первичным преобразователем кабелями. Внутри электронного блока расположены печатные платы и элементы присоединения внешних цепей.

Расходомеры обеспечивают:

- представление результатов измерений и диагностики на внешние устройства посредством унифицированных выходных сигналов;
 - индикацию измерительной информации на табло электронного блока;
 - архивирование измерительной информации и результатов диагностики.

Расходомеры обеспечивают представление на табло показания следующих величин: расход (M^3/Ψ), объем (M^3 или д M^3), время работы (мин).

Модели расходомера отличаются друг от друга материалами исполнения и, при необходимости, внутреннего покрытия трубы первичного преобразователя, материалами и размером электродов, а также набором выходных и цифровых сигналов электронного блока.

Длина прямых участков трубопровода перед и после первичного преобразователя расхода должна составлять, в простых случаях, соответственно, не менее $5 \cdot \text{Ду}$ и $3 \cdot \text{Ду}$, для сложных случаев данные приведены в Руководстве по эксплуатации.

Внешний вид расходомеров моделей DM, DT, DK (слева направо) показан на рисунке 1.

Рис.1

Программное обеспечение

Нормирование метрологических характеристик расходомера проведено с учетом того, что программное обеспечение является неотъемлемой и неизменяемой частью.

Расходомеры имеют внешнее программное обеспечение: (программа"EMCO_4411e" версии 2.0.9 для персонального компьютера) и встроенное ПО, не имеющее внешнего доступа

Внешнее программное обеспечение "EMCO_4411e" (версия 2.0.9) предназначено для установки на персональный компьютер под управлением операционной системы Microsoft Windows и предназначено для считывания результатов измерений, сохраненных в памяти расходомера и удаленного доступа к меню настройки расходомера.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

	Идентификаци-	Номер версии	Цифровой идентифи-	Алгоритм вычис-
Наименование	онное наимено-	(идентификаци-	катор программного	ления цифрового
программного	вание про-	онный номер)	обеспечения (кон-	идентификатора
обеспечения	граммного	программного	трольная сумма испол-	программного
	обеспечения	обеспечения	няемого кода)	обеспечения
EMCO_4411e	EMCO_Delta_20	2.0.9	5ee17d5cb0b3f0a52ec33	MD5
	09_12_21.exe		4d3177f22e8	WIDS
EMCO	EMCO_Delta_10	1.2.1	3ea12d5cb0b3f0a53cc33	MD5
LIVICO	09_12_31.exe	1.2.1	4d3178f21e8	WIDS

Уровень защиты программного обеспечения по МИ 3286-2010 - С

Метрологические и технические характеристики

Тип рабочей среды: жидкости с удельной электропроводимостью не менее 0,08 мкСм/см Диапазоны диаметров условных проходов, мм:

модель DM,	от 2 до 12
модель DL,	от 20 до 40
модель DP,	
модель М,	
модели DT, DK,	

Диапазоны измеряемых расходов, м 3 /ч,от 0 до 0,002·Ду 2 минимум до 0 до 0,04·Ду 2 максимум					
Максимум Диапазон температур рабочей среды, °С от 0-30 (материал сенсора Polyvinylchloride), 0-80 (материал сенсора Polyurethane) до 0-176 (материал сенсора Polyetheretherketone) Диапазон избыточных давлений рабочей среды, МПа: от 0-0,6 (DIN PN6) до 0-1,6 (DIN PN16)					
Пределы допускаемой относительной погрешности измерений объемного расхода и объема, %:					
модель DM, DL, DP, DT, M,± 0,5					
модель DK,					
Температура окружающего воздуха, °С	от минус 29 до 60				
Относительная влажность, %					
Степень защиты от воздействия окружающей среды:					
первичного преобразователя расхода,					
электронного блока,					
Выходные сигналы, пропорциональные текущему расходу:					
частотный или импульсный, Гц,	0-1000/10000 или с произвольным ве-				
сом импульса					
дискретный,					
токовый, мА					
кодовый	HART, RS-232C, RS-485				
Постоянная времени, с	0,03				
Питание от сети переменного тока,	напряжение 220^{+22}_{-33} В, частота 50 ± 1 Гц				
Потребляемая мощность, В-А,	не более 20				
Габаритные размеры (диаметр, длина), мм	от 254х332 до 1219х2501,				
Масса, кг	от 20 до 1764				
Средний срок службы, лет					
Средняя наработка на отказ, ч	80000				

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист эксплуатационной документации и на электронный блок методом наклейки.

Комплектность средства измерений

Наименование	Кол.
Расходомер UniMag	1 шт.
Руководство по эксплуатации	1 шт.
Методика поверки МП 2550-0036-2011	1 экз.

Поверка

осуществляется по методике, приведенной в документе МП 2550-0036-2011 "Расходомерысчетчики электромагнитные. Методика поверки", утвержденной ГЦИ СИ ФГУП «ВНИИМ им Д.И. Менделеева» 6 декабря 2011г.

Основные средства поверки:

установка поверочная «Взлет ПУ», объемный расход воды до $5000 \text{ м}^3/\text{ч}$, Ду поверяемых расходомеров до 400 мм, погрешность воспроизведения объемного расхода не более 0.3 %.

Сведения о методиках (методах) измерений

Методика прямых измерений изложена в документе «Расходомеры-счетчики электромагнитные UniMag. Руководство по эксплуатации »

Нормативные и технические документы, устанавливающие требования к расходомерамсчетчикам электромагнитным UniMag

ГОСТ Р 52932-2008. Счетчики электромагнитные, ультразвуковые, вихревые и струйные для водяных систем теплоснабжения. Общие технические условия.

- 2. ГОСТ Р 8.618-2006 "ГСИ. Государственная поверочная схема для средств измерений объемного и массового расходов газа».
 - 3. Техническая документация фирмы-изготовителя

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение государственных учетных операций.

Изготовители

Компания «Spirax-Sarco Limited», Великобритания

Адрес: Charlton House Cheltenham Gloucestershire GL53 8ER, UK

тел: +44 (0)1242 521361, факс: +44 (0)1242 573342

Завод «Spirax Sarco, Inc»., США

Адрес: 2150 Miller Drive Longmont, CO 80501 USA тел: +1 (303) 682 7060факс:+1 (303) 682 7069

Заявитель

Представительство компании «Спиракс-Сарко Лимитед»

Адрес:198188, Россия, г. Санкт-Петербург, ул. Возрождения, 20а, литер А

Тел.: (812) 640-90-44, Факс: (812) 640-90-43

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева», аттестат аккредитации № 30001-10

Адрес: 190005, Санкт-Петербург, Московский пр., 19 Тел. (812) 251-76-01, факс (812) 713-01-

14 e-mail: info@vniim.ru,.

Заместитель

Руководителя Федерального агентства по техническому регулированию и метрологии

Е. Р. Петросян

М.П. «___» _____ 2012г.