ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Трансформаторы тока ТОГ-110

Назначение средства измерений

Трансформаторы тока ТОГ -110 (далее по тексту - трансформаторы), предназначены для передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления в установках переменного тока напряжением $110~{\rm kB}$ частотой $50~{\rm \Gamma}_{\rm II}$.

Описание средства измерений

По принципу действия трансформатор является прибором электромагнитного типа и по конструкции представляет собой трансформатор опорного типа с верхним расположением блока обмоток в одном металлическом экране, с одной или двумя вторичными измерительными и от двух до пяти вторичными защитными обмотками.

Измерительные обмотки предназначены для электропитания измерительных приборов, защитные обмотки – для электропитания устройств защиты, контроля и сигнализации.

В качестве изолирующей среды во внутренних полостях трансформатора используется электротехнический газ (элегаз).

Первичная обмотка имеет три варианта конструктивного исполнения: одновитковая, двухвитковая и четырехвитковая для подключения к электрической сети с различными величинами токов. Изменение количества витков первичной обмотки производится с помощью перемычек.

В верхней части корпуса блока обмоток находится предохранительное устройство мембранного типа для аварийного сброса давления элегаза.

Трансформатор имеет различные варианты исполнения в зависимости от класса точности, величин первичного и вторичного токов, количества вторичных обмоток.

Внешний вид трансформатора представлен на рисунке 1.

Пломба со знаком поверки

Рисунок 1

Метрологические и технические характеристики

Таблица 1. Основные технические характеристики трансформаторов

таолица 1. Основные технические характеристики т		
Наименование параметра	Значение	
Номинальное напряжение U _{ном} , кВ	110	
Наибольшее рабочее напряжение U _{нр} , кВ	126	
Номинальная частота $f_{\text{ном}}$, Γ ц	50	
Номинальный первичный ток типоисполнения І _{1ном,} А	50; 75; 100; 150; 200; 300; 400; 500;	
	600; 750; 800; 1000; 1200; 1500; 2000	
Номинальный вторичный ток І _{2ном} , А	1; 5	
Количество вторичных обмоток:		
-для измерений	1;2	
-для защиты	2;3;4;5	
Наибольший рабочий первичный ток $I_{1 \text{нр}}$, А	50; 80; 100; 160; 200; 320; 400; 500;	
	630; 800; 1000; 1250; 1600; 2000	
Класс точности вторичных обмоток:		
$I_{2_{\text{HOM}}} = 1 \text{ A}$		
- для измерений и учета	0,2S; 0,2; 0,5S; 0,5; 1; 3; 5	
- для защиты	5P; 10P	
$I_{2\text{HOM}} = 5 \text{ A}$		
- для измерений и учета	0,2S; 0,2; 0,5S; 0,5; 1; 3; 5	
- для защиты	5P; 10P	
Номинальная вторичная нагрузка $S_{2\text{ном}}$ с индуктивно-		
активным коэффициентом мощности $\cos \phi_2 = 0.8$, B·A:		
$I_{2\text{HOM}} = 1 \text{ A}$		
- в классах точности 0,2S; 0,2; 0,5S; 0,5; 1; 3; 5	1060	
- в классах точности 5P; 10P	1075	
$I_{2\text{HOM}} = 5 \text{ A}$		
- в классах точности 0,2S; 0,2; 0,5S; 0,5; 1; 3; 5	1060	
- в классах точности 5Р; 10Р	1075	
Номинальная вторичная нагрузка $S_{2\text{ном}}$ с коэффициентом		
мощности $\cos \varphi_2 = 1$, B·A:		
$I_{2\text{HOM}} = 1 \text{ A}$		
- в классах точности 0,2S; 0,5S; 0,2; 0,5; 1; 3; 5	1; 2; 2,5	
$I_{2\text{HOM}} = 5 \text{ A}$		
- в классах точности 0,2S; 0,5S; 0,2; 0,5; 1; 3; 5	1; 2; 2,5	
Номинальная предельная кратность вторичных обмоток	2040	
для защиты К _{ном}	2040	
Номинальный коэффициент безопасности вторичных	525	
обмоток для измерений К _{Бном}	525	
Удельная длина пути утечки, см/кВ, не менее	2,5	
Сейсмостойкость по шкале MSK 64, баллы, не менее	7	
Габаритные размеры, мм, не более	2400×1150×800	
Масса, кг, не более	800	
Средняя наработка до отказа, ч, не менее	4×10^{6}	
Средний срок службы до списания, лет	30	

Климатические условия эксплуатации трансформатора — УХЛ, категория размещения — 1 по ГОСТ 15150-89.

Номинальные значения климатических факторов – по ГОСТ 15150, ГОСТ 17412 и ГОСТ 15543.1, при этом:

- высота над уровнем моря, м, не более 1000;

- окружающая среда – невзрывоопасная, не содержащая токопроводящей пыли, агрессивных газов и паров, разрушающих металлы и должна соответствовать типу атмосферы II по ГОСТ 15150.

Знак утверждения типа

наносят фотохимическим способом на табличку, устанавливаемую на дверце коробки внешних подсоединений трансформатора и на титульный лист руководства по эксплуатации и паспорта типографским способом.

Комплектность средства измерений

Таблица 2 – Комплектность

ΝοΝο π/π	Наименование	Обозначение	Количество
1	Трансформатор	Ж54.60510	1 шт.
2	Ведомость эксплуатационных документов	Ж54.60510ВЭ	1 экз.
3	Кольцо защитное	Ж43.18201	1 шт. на 3 изд
4	Система подвода элегаза к трансформатору	Ж58.28764	по заказу
5	Элегаз в баллоне		по заказу
6	Паспорт	Ж54.60510ПС	1 шт.

Поверка

осуществляется по ГОСТ 8.217 – 2003 "ГСИ. Трансформаторы тока. Методика поверки"

Сведения о методиках (методах) измерений

Методика измерений представлена в руководстве по эксплуатации Ж54.60510РЭ.

Нормативные и технические документы, устанавливающие требования к трансформаторам тока TOГ-110

ГОСТ 7746 – 2001 «Трансформаторы тока. Общие технические условия» Ж54.60510ТУ Трансформатор тока ТОГ-110. Технические условия

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

осуществление торговли и товарообменных операций.

Изготовитель

ФГУП "Комбинат "Электрохимприбор" 624205, г. Лесной Свердловской обл., Коммунистический пр., 6а Тел. (34342) 2 - 66 – 06, Факс (34342) 3 – 73 - 68

e-mail: main@ehp-atom.ru

Сведения об испытательном центре

ГЦИ СИ ФГУП «Уральский научно — исследовательский институт метрологии» 620000, г. Екатеринбург, ул. Красноармейская, д. 4 Тел./факс (343) 350 - 26 - 18 / (343) 350 - 20 - 39

E-mail: <u>uniim@uniim.ru</u> <u>http://www.uniim.ru/</u> Аттестат аккредитации № 30005-11 от 03.08.2011

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

$\mathbf{L} \mathbf{D}$	Потродски
E.D.	Петросян

М.п.	"	,,	2012 г