ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии трехфазные Альфа AS1440

Назначение средства измерений

Счетчики электрической энергии трехфазные Альфа AS1440 (далее по тексту – счетчики) класса точности 0,5S по ГОСТ Р 52323-2005 по активной энергии, классов точности 1 и 2 по ГОСТ Р 52322-2005 по активной энергии, классов точности 1 и 2 по ГОСТ Р 52425-2005 по реактивной энергии предназначены для:

- измерения и учета активной и реактивной энергии в трехфазных цепях переменного тока трансформаторного или непосредственного включения, в одно- и многотарифном режимах;
- накопления в профиле данных об энергии и мощности, а также данных параметров сети;
- использования в составе автоматизированных систем контроля и учета электроэнергии (АСКУЭ) и передачи с помощью имеющегося в счетчике интерфейса измеренных или вычисленных параметров на диспетчерский пункт по контролю, учету и распределению электрической энергии;
- измерения и отображения параметров трехфазной электрической сети (токов, напряжений, частоты, коэффициента мощности).

Описание средства измерений

Результаты измерений получаются путем обработки и вычисления входных сигналов тока и напряжения микропроцессорной схемой основной платы счетчика. Измеренные данные, параметры конфигурации, статусная и иная информация хранятся в энергонезависимой памяти и могут отображаться на жидкокристаллическом индикаторе (ЖКИ) счетчика.

Счетчики позволяют вести многотарифный учет активной и реактивной энергии в двух направлениях. Счетчики имеют возможность измерения и отображения параметров электрической сети.

Модификации и исполнения счетчиков, определяемые при заказе, отображается на щитке счетчика в виде буквенно-цифрового кода.

Пример записи модификации счетчика – AS1440–111–RALQ-P4U–B–GS

	AS1440 -	- 1	1	1		RALQ		P4U	1	В		GS
	AS1440	_ 1	1	1	_	KALQ	_	140	_		_	GS
Альфа AS1440												
Класс точности		_										
Класс точности 0,5S		5										
Класс точности 1 Класс точности 2		$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$										
Ridee To Hiocin 2		4										
Напряжения (элементі												
3×57,7/100 В (трехэлеме			1									
3×127/220 В (трехэлеме			2									
3×220/380 В (трехэлеме 3×100 В (двухэлементны	нтныи счетч	ик)	3 4									
3×100 В (двухэлементна 3×220 В (двухэлементна			5									
3 220 B (двухолементи	an c ici iiik)											
Токи (тип включения)												
1 (2) А (трансформаторы				1								
5 (10) А (трансформатор				2								
5 (100) А (непосредстве	нное включе	ение)		3								
Измерение энергии и н	аличие фун]						
Измерение активной и р				М		R (T)						
направлении (Измерени	е активной з					` ,						
многотарифном режиме												
Измерение активной и р	еактивной э	нерги	и в двух			RA						
направлениях Графики нагрузки по эн	епсии и спас	hики п	о параме	тпам		L						
сети	оргии и грас	prikri ii	о параме	трам		L						
Измерение активной энс	ергии по мод	цулю				\mathbf{M}						
Измерение параметров о			ной			Q						
погрешностью												
Функция "Чтение без пи	тания"					N						
Реле и вспомогательны	Je ryonli											
Импульсные каналы/ уп		выход	ы (от од	ного д	0 Ч	етырех)		P1-P4				
Управляющие входы (д	ва)					•						
Размыкающее реле (кон	тактор) для	счетчи	иков непо	осредс	тве	нного		\mathbf{U}				
включения								К				
Дополнительное питани	ie							W				
Цифровые интерфейсн	ы. Ы									j		
Цифровой интерфейс R										\mathbf{S}		
Цифровой интерфейс R	S485									В		
Manusan 200												
Модули коммуникаци GSM-модем	И											GS
GPRS-модем												GP
PLC-модем												PL
RF модуль												RF
Ethernet модуль												En

Примечания

- 1 При отсутствии в счетчике дополнительных функций, обозначаемых индексами "RA", "L", "M", "Q", "N", "U", "K", "W", "S", "B", эти индексы в обозначении модификации отсутствуют. Отсутствие индекса "Q" означает измерение параметров сети без нормирования погрешности измерений.
 - 2 Недопустимо сочетание символов "S" и "B" в обозначении модификации.
- 3 При отсутствии в счетчике модуля коммуникации: GSM-модема (индекс "GS" в обозначении модификации), GPRS-модема (индекс "GP" в обозначении), RF модуля (индекс "RF" в обозначении), PLC-модема (индекс "PL" в обозначении), Ethernet модуля (индекс "En" в обозначении модификации) его индекс в обозначении модификации счетчика отсутствует.

Соответствие классов точности счетчиков Альфа AS1440 непосредственного и трансформаторного включений по активной и реактивной энергии приведены в таблице 1.

Таблица 1

Измеряемая энергия	Класс	Класс точности счетчика				
Активная	0,5S	1	2			
Реактивная	1	2	2			

Фотография общего вида счетчика с указанием схемы пломбировки от несанкционированного доступа представлена на рисунке 1.

- 1 пломба ОТК завода-изготовителя; 2 пломба кнопки " RESET";
- 3 пломба поверителя; 4 пломба энергоснабжающей организации

Рисунок 1

Программное обеспечение

В счетчиках Альфа AS1440 все измерения и вычисления выполняет ЦСП (цифровой сигнальный процессор), в который, в процессе изготовления счетчика, загружается внутреннее программное обеспечение "Счетчики электрической энергии трехфазные "Альфа AS1440" (далее по тексту - ПО "Альфа AS1440"), которое является метрологически значимым. Влияние ПО на метрологические характеристики оценивают при испытаниях.

При этом инструментальную погрешность средства измерения и погрешность, вносимую ПО, не разделяют, и проверяют, что суммарная погрешность средства измерения не превышает допустимые значения. ПО "Альфа AS1440" аппаратно защищено от записи, что исключает возможность его несанкционированных настройки и вмешательства, приводящих к искажению результатов измерений.

Номера версий и цифровые идентификаторы ПО "Альфа AS1440" можно получить из счетчика с помощью программы "alphaSET".

Идентификационные данные ПО "Альфа AS1440" указаны в таблице 2.

Таблица 2 – Идентификационные данные программного обеспечения счетчиков электрической энергии трехфазных Альфа AS1440

Наименование	Номер версии	Цифровой	Алгоритм
программного	(идентификационный	идентификатор	вычисления
обеспечения	номер) программного	программного	цифрового
	обеспечения	обеспечения	идентификатора
		(контрольная сумма	программного
		исполняемого кода)	обеспечения
ПО «Счетчики	9.20	3D03	
электрической	9.21	CE07	
энергии	9.30	FE63	CRC
трехфазные	9.31	F9DB	CKC
«Альфа AS1440»	9.32	9C77	
	9.33	7945	

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений в соответствии с МИ 3286-2010 «С»

Метрологические и технические характеристики

Метрологические и технические характеристики счетчиков электрической энергии трехфазных Альфа AS1440 приведены в таблице 3.

Таблица 3 - Метрологические и технические характеристики счетчиков электрической энергии трехфазных Альфа AS1440

Наименование характеристики	Значение	Примечание
Классы точности:		
по активной энергии ГОСТ Р 52323-2005	0,5S	
по активной энергии ГОСТ Р 52322-2005	1; 2	
по реактивной энергии ГОСТ Р 52425-2005	1; 2	
Номинальные значения напряжения (Uном), В	3×57,7/100;	Допускаются
-	3×127/220;	3×63/110;
	3×220/380;	3×230/400;
	3×100; 3×220	3×110; 3×230
Рабочий диапазон напряжений, В	от 0,8. Ином до	
-	1,15∙Uном	
Номинальные (Іном) (максимальные) токи, А	1 (2), 5 (10)	
Базовый (Іб) (максимальный) ток, А	5 (100)	
Номинальное значение частоты, Гц	50	60 - по заказу
Рабочий диапазон частот, Гц	от 47,5 до 52,5	от 57 до 63 - по заказу
Диапазон значений постоянной счетчика по		Задается
импульсному выходу, имп./(кВт·ч) [имп./(квар·ч)]	от 1 до 10000	программно

Продолжение таблицы 3

продолжение таолицы 3	1	
Стартовый ток (чувствительность), А		
§ класс точности 0,5S	$0.001~\mathrm{I_{HOM}}$	При коэффициенте
§ класс точности 1		мощности, равном
 трансформаторное включение 	$0,002 I_{\text{HOM}}$	1
 непосредственное включение 	$0,004 I_{6}$	
§ класс точности 2 (непосредственное вкл.)	$0.005 I_{6}$	
Потребляемая мощность на фазу по цепям	, ,	
напряжения, Вт (В-А), не более		
– трансформаторное включение	0,7 (0,8)	
непосредственное включение	0,7 (0,8)	
Потребляемая мощность по цепям тока при Іном	0,7 (0,0)	
(трансформаторное вкл.), Вт (В·А)	0,01 (0,01)	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0,01 (0,01)	
Параметры импульсного выхода:	27	
– напряжение, В, не более	27	
– ток, мА	25	
Длительность выходных импульсов, мс	120	Возможно другое
		значение по заказу
Скорость обмена информацией при связи со		
счетчиком по цифровым интерфейсам, бит/с	300 - 19200	
Предел основной абсолютной погрешности хода		
внутренних часов, с/сутки, не более	$\pm 0,5$	
Количество тарифных зон	до 4-х	
Разрядность ЖКИ	8 разрядов	
дробная часть (количество знаков после запятой)	о разрядов	
программируется		
Защита от несанкционированного доступа:		
±	Есть	
– пароль счетчика	Есть	
– аппаратная блокировка		
– контроль снятия крышки зажимов	Есть	
– контроль снятия кожуха	Есть	
– аппаратная защита метрологически значимой	Есть	
части		
Сохранение данных в памяти, лет	30	При отсутствии
		питания
Самодиагностика счетчика	Есть	Выполняется при
		включении
		питания, а также
		после каждого
		обмена через
		оптический порт
Масса, кг, не более		omm readin nopr
– без размыкающего реле	1,5	
– оез размыкающего реле– с размыкающим реле	1,9	
1 1	1,7	
Габаритные размеры (высота × ширина ×		
толщина), мм, не более	076,170,.00	
– без размыкающего реле	276×170×80	
– с размыкающим реле	306×170×80	
Средняя наработка до отказа, ч, не менее	120000	
Интервал между поверками, лет	14	
- I		
Срок службы, лет, не менее Класс защиты по ГОСТ Р 51350-99	30	

Окончание таблицы 3

Степень защиты по ГОСТ 14254-96	IP52	Счетчик
		предназначен для
		установки внутри
		помещений
Условия эксплуатации:		
– диапазон рабочих температур окружающего		
воздуха, °С	от минус 40 до + 70	
– относительная влажность, (неконденсирующаяся),		
%, не более	0 - 95	
– атмосферное давление кПа (мм рт. ст.)	60 - 106,7 (460 - 800)	

Счетчики Альфа AS1440 класса точности 0,5S, имеющие индекс "Q" в обозначении модификации, измеряют параметры сети с нормированной погрешностью. Диапазоны, в которых нормируются ток, напряжение и коэффициент мощности, совпадают с соответствующими диапазонами измерений, в которых эти измерения реализуются счетчиками класса точности 0,5S.

Диапазоны измерений и пределы допускаемой основной относительной погрешности измерений параметров электрической сети для счетчиков с индексом "Q" в обозначении модификации приведены в таблице 4.

Таблина 4

Наименование характеристики	Значение
Пределы допускаемой основной относительной погрешности	
измерения напряжения в рабочем диапазоне напряжений, %	$\pm 0,5$
Пределы допускаемой основной относительной погрешности	
измерения тока в диапазоне (0,1 - 10) А, %	$\pm 0,5$
Пределы допускаемой погрешности измерения частоты напряжения	
в диапазоне (47,5 - 52,5) Гц, Гц	$\pm 0,01$
Пределы допускаемой погрешности измерения коэффициента мощности	
в диапазоне (0,5 (инд.)-1-0,5 (емк.)) при значениях тока (0,1 - 10) А	$\pm 0,01$

Дополнительные погрешности измерений параметров сети, вызываемые изменением влияющих величин, не превосходят пределов, установленных в ГОСТ Р 52323-2005 для счетчиков класса точности 0.5S.

Цена единицы младшего разряда параметров электрической сети, выводимых на ЖКИ, приведена в таблице 5.

Таблица 5

Наименование параметра	Цена единицы младшего разряда
Напряжения фаз А, В, С	0,1 B
Токи фаз А, В, С	0,1 A
Коэффициент мощности трехфазной сети, коэффициент мощности фаз A, B, C	0,01
1	0.01 Γπ
Частота измеряемой сети	0,01 Гц

Во внутренних регистрах счетчика параметры электрической сети хранятся с дробной частью не менее четырех разрядов.

Знак утверждения типа

Знак утверждения типа наносится на щиток счетчика Альфа AS1440 методом трафаретной печати и на титульный лист паспорта и руководства по эксплуатации типографским способом.

Комплектность средства измерений

В комплект поставки счетчика Альфа AS1440 входят:

- счетчик;
- паспорт ДЯИМ.411152.020 ПС;
- руководство по эксплуатации ДЯИМ.411152.020 РЭ;
- методика поверки МП № 477/447-2011;
- программное обеспечение (ПО) alphaSET;
- упаковочная тара.

Примечание - Допускается комплектование и передача РЭ, МП и ПО на электронном носителе; поставляется один CD-диск на партию счетчиков в 10 штук.

Поверка

Осуществляется в соответствии с документом «ГСИ. Счетчики электрической энергии трехфазные Альфа AS1440. Методика поверки. МП № 477/447-2011», утвержденным ФБУ «Ростест-Москва» 22.07.2011 г.

Основные средства поверки:

- установка автоматическая многофункциональная для поверки счётчиков электрической энергии SJJ-1 с эталонным счетчиком класса точности 0,05;
 - универсальная пробойная установка УПУ-10;
 - IBM (PC-совместимый компьютер) с OC Microsoft Windows NT/2000/XP/Vista.
 - Устройство синхронизации времени УСВ-2;
 - Частотомер Ч3-63.

Сведения о методиках (методах) измерений

Методы измерений с помощью счетчиков электрической энергии трехфазных Альфа AS1440 указаны в документе «Счетчик электрической энергии трехфазный Альфа AS1440. Руководство по эксплуатации» ДЯИМ.411152.020 РЭ.

Нормативные и технические документы, устанавливающие требования к счетчикам электрической энергии трехфазным Альфа AS1440.

- 1 ГОСТ 22261-94 «Средства измерения электрических и магнитных величин. Общие технические условия».
- 2 ГОСТ Р 52320-2005 (МЭК 62052-11:2003) «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии».
- 3 ГОСТ Р 52322-2005 (МЭК 62053-21:2003) «Аппаратура для измерения электрической энергии переменного тока. Частые требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2».
- 4 ГОСТ Р 52323-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0.2S и 0.5S»
- 5 ГОСТ Р 52425-2005 (МЭК 62053-23:2003). Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические

счетчики реактивной энергии (в части счетчиков реактивной энергии классов точности 1 и 2).

- 6 Счетчики электрической энергии трехфазные Альфа AS1440. Технические условия ТУ 4228-014-29056091-11.
 - 7 Техническая документация ООО «Эльстер Метроника», Россия.

м.п.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение государственных учетных операций.

Изготовитель

ООО «Эльстер Метроника»

Адрес: 111141, г. Москва, 1-й проезд Перова Поля, дом 9, стр. 3

Тел./факс. (495) 730-02-85/ 730-02-81

e-mail: metronica@ru.elster.com

http://www.izmerenie.ru

Испытательный центр

ГЦИ СИ ФБУ «Ростест-Москва» 117418, г. Москва, Нахимовский проспект, д.31 Тел. (495) 544-00-00; http://www.rostest.ru Aттестат аккредитации № 30010-10 от 15.03.2010

Заместитель руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р.Петросян «___»_____2011 г.