ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Анализатор размера частиц АРН-2

Назначение средства измерений

Анализатор размера частиц APH-2 (далее по тексту анализатор) предназначен для измерения размеров дисперсных частиц нанометрового и субмикронного размера в жидких средах.

Описание средства измерений

Принцип действия анализатора размера частиц APH-2 основан на методе динамического рассеяния света (далее по тексту - ДРС). Линейно поляризованное лазерное излучение направляется на кювету с образцом и фокусируется в малом объеме исследуемой жидкости. Оптическая система собирает излучение, рассеянное исследуемыми частицами под определенным углом (углом рассеяния). Угол рассеяния может устанавливаться в интервале от 15° до 165°. Из-за броуновского движения частиц происходят флуктуации интенсивности рассеянного ими лазерного излучения.

Скорость затухания флуктуаций Γ находится из автокорреляционной функции (АКФ) интенсивности рассеянного излучения, либо из частотного анализа зависимости этой интенсивности от времени.

Для взвеси сферических частиц одинакового размера (монодисперсной) скорость затухания флуктуаций связана с коэффициентом диффузии частиц в жидкости D соотношением (1):

$$\Gamma = Dq^2 \tag{1}$$

где q — волновой вектор световой волны, $q=4\cdot\pi\cdot n\cdot\sin(\theta/2)/\lambda$ (n —показатель преломления жидкости, в которой взвешены наночастицы, θ - угол рассеяния, λ — длина волны лазерного излучения).

По значению коэффициента диффузии D, определенному с помощью формулы (1), находят средний гидродинамический диаметр частицы DH

Dн вычисляется из коэффициента диффузии по соотношению Стокса-Эйнштейна.

$$D = k_b T / 3\pi \eta D H \tag{2}$$

где D — коэффициент диффузии,

 η — вязкость среды,

 k_b — постоянная Больцмана,

T — абсолютная температура.

Это соотношение точно выполняется только для сферических частиц, поэтому измеряемый методом ДРС гидродинамический диаметр определяется, как диаметр сферической частицы, которая имела бы в данной жидкости тот же коэффициент диффузии, что и измеряемая частица. Несферические частицы участвуют в двух типах диффузии — трансляционной (движение частицы как целого) и вращательной; для частиц, имеющих форму цилиндра, соответствующие коэффициенты диффузии позволяют вычислить диаметр и длину. Для определения коэффициента вращательной диффузии несферических частиц измеряют скорость затухания флуктуаций деполяризованной компоненты рассеянного излучения (для сферических частиц такая компонента отсутствует).

Рисунок 1 – Общий вид Анализатора размера частиц АРН-2 с обозначением мест пломбирования и маркировки.

В полидисперсных взвесях каждому типу частиц соответствует свое значение скорости затухания флуктуаций Γ_i . Эти значения вычисляются программным обеспечением анализатора с помощью специальных алгоритмов. По вычисленным значениям программа рассчитывает, с помощью формулы (2), распределение частиц по гидродинамическим диаметрам.

Программное обеспечение

Управление прибором, прием и обработка данных осуществляются с помощью персонального компьютера (ПК) со специализированным автономным программным обеспечением.

Программное обеспечение поддерживает, наряду с вычислением размерных параметров наночастиц, построение градуировочного графика и вычисление счетной концентрации наночастиц по интенсивности рассеянного излучения, а также исследование кинетики (зависимости диаметра наночастиц от времени).

Идентификационные данные программного обеспечения представлены в таблице 1. Таблица 1.

Наименование про-	Идентифика-	Номер версии	Цифровой идентифи-	Алгоритм вычис-
граммного обеспечения	ционное на-	(идентификаци-	катор программного	ления цифрового
	именование	онный номер)	обеспечения (кон-	идентификатора
	программного	программного	трольная сумма ис-	программного
	обеспечения	обеспечения	полняемого кода)	обеспечения
Программное обеспе-				
чение анализатора раз-	APHH	2.2.1	87160A5F	CRC32
меров частиц АРН-2				

Программное обеспечение размещается в энергонезависимой памяти персонального компьютера. Несанкционированный доступ к программному обеспечению исключён посредством ограничения прав учетной записи пользователя.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Установка обновленных версий ПО допускается только представителями предприятия – изготовителя.

Метрологические и технические характеристики

Метрологические и технические характеристики анализатора приведены в таблице 2. Таблица 2

Наименование характеристики	Значение характеристики
Диапазон измерений размера частиц (среднего гидродинамического диаметра), нм	5 - 500
Диапазон показаний размера частиц (среднего гидродинамического диаметра), нм	1 - 5000
Предел допускаемой систематической составляющей погрешности измерения среднего гидродинамического диаметра, %, не более	5
Пределы допускаемого относительного СКО случайной составляющей погрешности измерения среднего гидродинамического диаметра, %, не более	3
Пределы допускаемого значения относительного СКО случайной составляющей погрешности измерения интенсивности рассеянного излучения, %, не более	5
Регистрация поляризации рассеянного излучения	Возможность регистрации двух взаимно перпендикулярных поляризаций
Диапазон углов рассеяния, °	15 - 165
Диапазон температур термостатирования, °С	5 -70
Нестабильность термостатирования, °С, не более	0,1
Погрешность термостатирования, °С, не более	0,3
Потребляемая мощность, Вт, не более	100
Габаритные размеры, мм	750×250×560
Масса, кг, не более	28
Условия эксплуатации:	
Температура воздуха, °С	15 - 28
Относительная влажность воздуха (без конденсации), %, не более	70

Знак утверждения типа

Знак утверждения типа средства измерений наносится на титульный лист Руководства по эксплуатации типографским способом и в виде наклейки на корпус прибора.

Комплектность средства измерений

Состав комплекта анализатора представлен в таблице 3.

Таблица 3

Наименование	Количество, шт.
Анализатор размера частиц АРН-2	1
ІВМ совместимый компьютер	1
Кюветы кварцевые с длиной оптического пути 10 мм	3
Кюветы цилиндрические с внутренним диаметром 10 мм	1
Руководство по эксплуатации	1
Методика поверки МП 49.Д4 - 11	1

Поверка

осуществляется по документу «Анализатор размера частиц АРН-2. Методика поверки МП 49.Д4-11», утвержденному Φ ГУП «ВНИИО Φ И» 17 ноября 2011 г.

Основные средства поверки:

Государственный стандартный образец диаметра наносфер золота в жидкой среде (комплект 3H) (ГСО 9629-2010).

Основные метрологические характеристики:

Номинальное значение аттестованной характеристики СО: 30 нм, 60 нм.

Границы допускаемой абсолютной погрешности аттестованного значения СО при доверительной вероятности P=0,95 – не более 2 нм, 3нм и 4нм соответственно для 10 нм, 30 нм и 60 нм.

Государственный стандартный образец гранулометрического состава Д040 (монодисперсный полистирольный латекс) - ГСО 7967-2001.

Основные метрологические характеристики

Аттестованное значение среднего диаметра частиц (D_{so}) - 380 нм.

Пределы допускаемой относительной погрешности аттестованного значения при доверительной вероятности P=0.95 – не более $\pm 5\%$.

Сведения о методиках (методах) измерений

«Анализатор размера частиц АРН-2. Руководство по эксплуатации», раздел 3 «Подготовка АРН-2 к использованию» и раздел 4 «Использование по назначению».

Нормативные документы, устанавливающие требования к анализатору размера частиц APH-2

ГОСТ 8.606-2004 Государственная система обеспечения измерений. Государственная поверочная схема для средств измерений дисперсных параметров аэрозолей, взвесей и порошкообразных материалов.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление деятельности в области здравоохранения, осуществление деятельности в области охраны окружающей среды.

Изготовитель

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт оптико-физических измерений» (ФГУП «ВНИИОФИ»)

Адрес: г. Москва, 119361, ул. Озерная д.46

Тел/факс: (499) 792-07-03, E-mail: <u>vniiofi@vniiofi.ru</u>

Испытательный центр

ГЦИ СИ ФГУП «ВНИИОФИ», аттестат аккредитации № 30003-08 от 30.12.2008 г.

Адрес: 119361, Москва, ул. Озерная, 46.

Телефон: (495) 437-56-33; факс: (495) 437-31-47.

E-mail: vniiofi@vniiofi.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.п. «___»___ 2011 г.