ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители расхода жидкости Sewer-Mag

Назначение средства измерений

Измерители расхода жидкости Sewer-Mag предназначены для измерений объемного расхода и объема жидкости в безнапорных трубопроводах диаметром от 100 до 800 мм, напорных трубопроводах диаметром от 25 до 400 мм.

Описание средства измерений

Принцип действия измерителя расхода жидкости Sewer-Mag (в дальнейшем - измеритель), для случаев применения измерителя в безнапорных трубопроводах, основан на изменении режима работы трубопровода из частично заполненного в трубопровод, идущий полным сечением. В случаях применения измерителя Sewer-Mag в напорных трубопроводах нет необходимости применения дополнительных мер по обеспечению заполнения измерительного участка.

Измеритель представляет собой измерительный участок трубопровода с установленным на нем электромагнитным расходомером. Выпускная часть измерительного участка выполнена в виде изгиба, направленного вверх, таким образом, создается постоянный подпор, и все сечение участка оказывается заполненным.

Принцип действия электромагнитного расходомера основан на использовании закона электромагнитной индукции Фарадея. В проводнике, движущемся в электромагнитном поле, индуцируется напряжение, величина которого пропорциональна скорости его движения. В качестве проводника выступает электропроводящая жидкость - вода. Электромагнитные катушки внутри первичного преобразователя создают магнитное поле, а электроды на его внутренней поверхности воспринимают разность потенциалов, возникающую при движении воды в электромагнитном поле. Расход жидкости определяется с учетом внутреннего диаметра измерительного участка трубопровода.

Измеритель состоит из первичного преобразователя скорости, измерительного участка, элемента уплотнения или фланцевых соединений и электронного блока. В случаях использования измерителя в безнапорных трубопроводах, первичный преобразователь скорости вместе с измерительным участком крепятся в трубопроводе при помощи элемента уплотнения, входящего в комплект поставки, который блокирует свободную часть трубопровода, заставляя жидкость течь по измерительному участку. В случаях использования измерителя в напорных трубопроводах, первичный преобразователь скорости вместе с измерительным участком устанавливаются в трубопроводе при помощи фланцевых соединений. Если первичный преобразователь устанавливается на напорный трубопровод, то измерительный участок не требует применения направленного вверх изгиба. Измерительный участок изготавливается из нержавеющей стали и крепится к первичному преобразователю при помощи фланцевого соединения.

Для преобразования измерительной информации и управления процессом измерений в состав измерителя расхода входит электронный блок, к которому подключаются первичный преобразователь и дополнительное оборудование.

Электронный блок, входящий в комплект измерителя расхода, выпускается в портативной и стационарной модификации. Электронный блок преобразует и передает сигналы, поступающие от первичных преобразователей во внешние цепи в стандарте RS-485. Электронный блок (портативная и стационарная модификации) имеют встроенный жидкокристаллический дисплей и цифровые, аналоговые, частотные, релейные выходы.

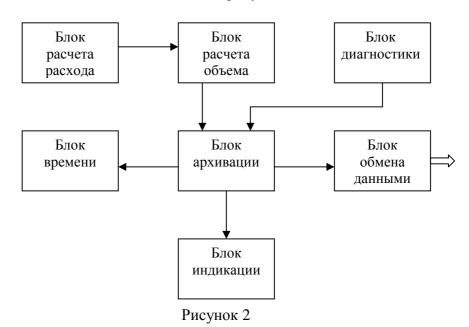
Внешний вид измерителя и электронного блока представлен на рисунке 1.

Первичный преобразователь скорости потока жидкости

Первичный преобразователь скорости потока жидкости

Электронный блок ML210

Рисунок 1


На жидкокристаллическом дисплее во время проведения измерений отображаются следующие значения измеряемых величин в графическом и цифровом виде:

- средняя скорость;
- общий расход;
- текущий расход;
- дата, время.

При установке измерителя на трубопроводе нет необходимости соблюдать длины прямых участков, так как измеритель выпускается с измерительным участком необходимой длины.

Программное обеспечение

Измерители имеют встроенное и автономное программное обеспечение (ПО). Структура и взаимосвязи частей ПО показана на рисунке 2.

Основные функции частей программного обеспечения:

1) Блок расчета расхода предназначен для расчетов его значений по результатам измерений сигнала, формируемого на датчиках расходомера;

- 2) Блок расчета объема предназначен для расчетов его значений по результатам измерений расхода;
- 3) Блок архивации предназначен для расчетов и хранения измерительной и диагностической информации;
- 4) Блок обмена предназначен для вывода через последовательный порт измерительной, диагностической и настроечной информации на внешние устройства приема;
- 5) Блок индикации предназначен для визуального отображения на табло расходомера измерительной, диагностической и настроечной информации;
- 6) Блок реального времени предназначен для измерения времени работы расходомера и времени действия диагностируемых ситуаций;
- 7) Блок диагностики предназначен для контроля значений измеренных параметров на соответствие заданным значениям и формирования диагностических сообщений.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

Наимено- вание программ- ного обеспечения	Идентифика- ционное наименование программного обеспечения	Номер версии (идентифи- кационный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
If2	SHA-1 DF0D377A81 2FD999EDAA F6226AAEAF 2A7EE841F6	1.84	MD5 96436ABDBF6174044 E798EEE7DEFD706	CRC32 A66E5231

Нормирование метрологических характеристик расходомера проведено с учетом того, что программное обеспечение является неотъемлемой и неизменяемой частью расходомера. Уровень защиты программного обеспечения - С по МИ 3286-2010.

Метрологические и технические характеристики

Таблица 2

Наименование параметра	Значение параметра
Диаметр условного прохода трубопровода (Ду), мм	от 100 до 800
Диапазон измерений расхода, м ³ /ч	0,4-900
Пределы допускаемой относительной погрешности при измерении	0,1 700
объемного расхода жидкости (δ_0), %	± 2
Напряжение питания постоянного тока, В (аккумуляторная батарея, блок питания)	10-35
Напряжение питания переменного тока, В	90-220
Максимальный потребляемый ток, А	0,1
Потребляемая мощность, Вт	22
Диапазон температуры измеряемой среды, °С	от 0 до 80
Диапазон температуры окружающей среды, °С	от минус 30
	до плюс 80

Габаритные размеры первичного преобразователя, мм:	
диаметр первичного преобразователя (в зависимости от Ду), мм	от 25 до 400
длина (с измерительным участком, в зависимости от Ду), мм	от 500 до1500
Габаритные размеры электронного блока, мм:	
Портативная модель:	
Высота; Глубина; Ширина	214; 69; 162
Стационарная модель:	
Высота; Глубина; Ширина	230; 170; 146
Масса первичного преобразователя в комплекте с измерительным	
участком, кг:	от 10 до 50
Масса электронного блока, кг	
Портативная модель	1,34
Стационарная модель	1,5
Относительная влажность окружающего воздуха (для электронного	до 100
блока), %	
Средний срок службы, лет	10
Средняя наработка на отказ, ч	65 000

Знак утверждения типа

наносят на эксплуатационную документацию типографским способом и на электронный блок преобразователя в виде наклейки.

Комплектность средства измерений

В комплект поставки входят:	
Первичный преобразователь	1 шт.;
Электронный блок	1 шт.;
Методика поверки МП 2550-0147-2010	1 экз.;
Элемент уплотнения	1 шт.;
Транспортная упаковка	1 шт.;
Комплект монтажный	1 шт.;
Руководство по эксплуатации	1 экз.

^{**}Тип и марка оговаривается при заказе.

Поверка

осуществляется по документу МП 2550-0147-2010 «Измерители расхода жидкости «Sewer-Mag». Методика поверки», утвержденному ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» 08 сентября 2010 г.

Сведения о методиках (методах) измерений

Методы измерений изложены в Руководстве по эксплуатации измерителей расхода жидкости Sewer-Mag.

Нормативные и технические документы, устанавливающие требования к измерителям расхода жидкости Sewer-Mag

- 1. ГОСТ 8.510-2002 "ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкости".
- 2. Техническая документация фирмы-изготовителя.

Рекомендации по областям применения в сфере коммерческого учета расхода воды и осуществлении торговых операций.

- при выполнении государственных учетных операций;
- при осуществлении торговли и товарообменных операций.

Изготовитель

Компания «Flow-Tronic», Бельгия. Адрес: Welkenraedt, B-4840, Rue J.H. Cool 19a Tel. +32 (0) 87 899799, +32 (0) 87 899790

Заявитель

ООО "Нэко" 191036, г. Санкт-Петербург, ул. 3-я Советская, д. 9 пом. 11-Н тел/факс +7-812-271-05-05

Испытательный центр

ГЦИ СИ ФГУП «ВНИЙМ им. Д.И. Менделеева»,

Адрес: 190005, Санкт-Петербург, Московский пр., 19 Тел. (812) 251-76-01,

факс (812) 713-01-14, e-mail: <u>info@vniim.ru</u>

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. « » 2014 г.