СОГЛАСОВАНО

Приложение к свидетельству № 40731 об утверждении типа средств измерений

Руководитель ГЦИ СИ
Технической миректор
ОО СТЕТИКО ОВ ВЕЗМЕНТО О

Комплекс измерительновычислительный CENTUM модели CS3000R3 Внесен в Государственный реестр средств измерений Регистрационный № 45438~10

Изготовлен по технической документации НПЗ ОАО «ТАИФ-НК» г. Нижнекамск, зав. №01.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Комплекс измерительно-вычислительный CENTUM модели CS3000R3 (далее - ИВК) предназначен для измерения, преобразования, обработки, хранения и индикации: измерительных сигналов силы постоянного тока (от 4 до 20 мA, HART) от измерительных преобразователей расхода, давления, разности давлений, температуры; измерительных сигналов термоэлектрических преобразователей по ГОСТ 6616 и термометров сопротивления по ГОСТ Р 8.625; дискретных сигналов; воспроизведения (управляющих и аварийных) выходных дискретных сигналов и сигналов силы постоянного тока (от 4 до 20 мА); вычисление теплоты сгорания, относительной плотности, числа Воббе и энергосодержания природного газа по ГОСТ 31369; приведения объемного расхода (объема) природного газа, азота, воздуха при рабочих условиях к стандартным условиям в соответствии с ГОСТ 2939; вычисления объемного расхода (объема) природного газа, азота, воздуха приведенного к стандартным условиям, и массового расхода (массы) бензина, воды, гудрона, дизельного топлива, полугудрона, перегретого и насыщенного пара на установленных в трубопроводах сужающих устройствах в соответствии с ГОСТ 8.586.1, ГОСТ 8.586.2, ГОСТ 8.586.5; вычисления массового расхода (массы) нефти и нефтепродуктов в соответствии с ГОСТ Р 8.595, жидких углеводородных сред, однофазных и однородных по физическим свойствам жидкостей по результатам измерений кориолисовыми (массовыми) измерительными преобразователями расхода; вычисления массового расхода (массы) воды, перегретого и насыщенного пара по результатам измерений измерительными преобразователями объемного расхода.

Область применения - НПЗ ОАО «ТАИФ-НК» г. Нижнекамск.

ОПИСАНИЕ

ИВК состоит из контроллеров AFV10D, источников питания, модулей аналогового ввода/вывода (FIO) AAI141-H00, AAI141-S00, AAI543-H00, модулей связи ESB-шины EC401-10, модулей связи (RS-422/485) ALR121-S00, модулей дискретного входа ADV151-P10/B5S00, модулей дискретного выхода ADV569-P00, устройств ввода/вывода измерительных дистанционных IS рас: 9160, 9182, 9165, 9170, 9193, 9194, 9199, 9191, операторской станции управления.

Принцип действия ИВК заключается в измерении и преобразовании входных сигналов (от 4 до 20 мА, НАРТ), поступающих от измерительных преобразователей расхода, давления, разности давлений, температуры; входных сигналов термоэлектрических преобразователей по ГОСТ 6616 и термометров сопротивления по ГОСТ Р 8.625, тем самым, ИВК обеспечивает измерение следующих параметров потока измеряемой среды: объемный расход (объем) при рабочих условиях, массовый расход (масса), давление, перепад давления (на стандартном сужающем устройстве - диафрагме по ГОСТ 8.586.2), температура.

ИВК осуществляет расчет объемного расхода (объема) природного газа, азота, воздуха, приведенного к стандартным условиям, и массового расхода (массы) бензина, воды, гудрона, дизельного топлива, полугудрона, перегретого и насыщенного пара по методу переменного перепада давления в соответствии с алгоритмами расчета согласно ГОСТ 8.586.5.

ИВК осуществляет приведение объемного расхода (объема) природного газа, азота, воздуха при рабочих условиях к стандартным условиям в соответствии с ГОСТ 2939, путем автоматической электронной коррекции показаний измерительных преобразователей объемного расхода: вихревых, турбинных, ротационных, ультразвуковых по температуре и давлению измеряемой среды (природного газа, азота, воздуха), коэффициенту сжимаемости измеряемой среды (природного газа), в соответствии с ПР 50.2.019 для измерительных преобразователей объемного расхода: вихревых, ротационных и турбинных.

Расчет физических свойств измеряемой среды проводится ИВК согласно: природного газа - ГОСТ 30319.0, ГОСТ 30319.1, ГОСТ 30319.2 и ГОСТ 30319.3; азота - ГСССД 4-78 и ГСССД 89-85; воздуха - ГСССД 8-79 и ГСССД 109-87; воды, перегретого и насыщенного пара - ГСССД 6-89, ГСССД 187-99 и ГСССД МР 147–2008. Коэффициент сжимаемости природного газа рассчитывается ИВК любым из трех методов, в соответствии с ГОСТ 30319.2: модифицированный метод NX19 мод., модифицированное уравнение состояния GERG-91 мод., уравнение состояния ВНИЦ СМВ.

ИВК осуществляет расчет массового расхода (массы) нефти и нефтепродуктов в соответствии с ГОСТ Р 8.595.

ИВК защищен от несанкционированного доступа в программное обеспечение и изменения алгоритмов и установленных параметров, путем введения пароля. Алгоритм расчета ИВК физических свойств и расхода природного газа, азота, воздуха, воды, перегретого и насыщенного пара; расхода нефти, нефтепродуктов, жидких углеводородных сред, однофазных и однородных по физическим свойствам жидкостей и программное обеспечение ИВК аттестованы ГЦИ СИ ООО «СТП».

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1

Наименование	ИВК	
1	2	
Диапазоны входных сигналов:		
- силы постоянного тока, мА	от 4 до 20	
- термоэлектрических преобразователей по ГОСТ 6616		
с номинальной статической характеристикой (НСХ)		
(B, E, J, K, N, R, T, L, S), °C	от минус 270 до 1800	
- термометров сопротивления по ГОСТ Р 8.625 (тип		
Pt100, Pt500, Pt1000, Ni100, Ni500, Ni1000), °C	от минус 200 до 850	
Диапазоны выходных сигналов:		
- силы постоянного тока, мА	от 4 до 20	
Пределы допускаемой основной абсолютной погреш-		
ности ИВК при преобразовании входного аналогового		
сигнала (силы постоянного тока от 4 до 20 мА) в циф-		
ровой сигнал, мкА	± 36	

1	2	
Пределы допускаемой дополнительной абсолютной	2	
погрешности ИВК при преобразовании входного ана-		
логового сигнала (силы постоянного тока от 4 до 20		
мА) в цифровой сигнал от влияния изменения темпе-		
ратуры окружающей среды от нормальной (23 ± 2 °C)		
в диапазоне температур от 0 до 50 °C, мкА /10 °C	± 23	
Пределы допускаемой основной приведенной погреш-	1. 23	
ности ИВК при преобразовании входного аналогового		
сигнала термоэлектрического преобразователя по		
ГОСТ 6616 с номинальной статической характеристи-		
кой (HCX) (B, E, J, K, N, R, T, L, S) в цифровой		
сигнал, %	± 0,7	
Пределы допускаемой основной приведенной погреш-	10,7	
ности ИВК при преобразовании входного аналогового		
сигнала термометра сопротивления по ГОСТ Р 8.625		
(тип Pt100, Pt500, Pt1000, Ni100, Ni500, Ni1000) в циф-		
ровой сигнал, %	± 0.25	
<u> </u>	± 0,35	
Пределы допускаемой дополнительной приведенной		
погрешности ИВК при преобразовании входного ана-		
логового сигнала термоэлектрического преобразователя по ГОСТ 6616 с номинальной статической характе-		
ристикой (HCX) (B, E, J, K, N, R, T, L, S) и сигнала		
термометра сопротивления по ГОСТ Р 8.625 (тип		
Рt100, Pt500, Pt1000, Ni100, Ni500, Ni1000) в цифровой		
сигнал от влияния изменения температуры окружаю-		
щей среды от нормальной (23 \pm 2 °C) в диапазоне тем-		
ператур от 0 до 50 °C, %/10 °C	± 0,15	
Пределы допускаемой основной абсолютной погреш-	10,15	
ности ИВК при преобразовании цифрового сигнала в		
выходного аналоговый сигнал (силы постоянного тока		
от 4 до 20 мА), мкА	± 58	
Пределы допускаемой дополнительной абсолютной	± 36	
погрешности ИВК при преобразовании цифрового		
сигнала в выходного аналоговый сигнал (силы посто-		
янного тока от 4 до 20 мА) от влияния изменения тем-		
пературы окружающей среды от нормальной (23 ± 2		
°C) в диапазоне температур от 0 до 50 °C, мкА /10 °C	± 23	
Пределы допускаемой относительной погрешности	<u> </u>	
ИВК при измерении времени, %	± 0,01	
Пределы допускаемой относительной погрешности	<u> </u>	
ИВК:		
- при вычислении объемного расхода (объема) природ-		
ного газа, азота, воздуха, приведенного к стандартным		
условиям, и массового расхода (массы) воды, перегре-		
того и насыщенного пара, нефти и нефтепродуктов,		
жидких углеводородных сред, однофазных и однород-		
ных по физическим свойствам жидкостей, %	± 0,05	
- при приведении объемного расхода (объема) природ-	,	
ного газа, азота, воздуха при рабочих условиях к стан-		
дартным условиям, %	± 0,05	
Условия эксплуатации:		
-температура окружающей среды, °С	от 0 до 50	

1	2		
-относительная влажность, %	от 20 до 80 без конденсации		
-атмосферное давление, кПа	от 84 до 106,7		
Напряжение питания:			
- источник постоянного тока, В	24 (±10%)		
- источник переменного тока, В	220 (±10%)		
Потребляемая мощность, Вт, не более	230		
Габаритные размеры, мм, не более	800x2100x600		
	800x2100x400		
	107,5x32,8x130		
Масса, кг, не более	280		
Средняя наработка на отказ, ч, не менее	18000		
Средний срок службы, лет, не менее	12		

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на корпус ИВК методом шелкографии и на титульный лист паспорта типографским способом.

КОМПЛЕКТНОСТЬ

Комплектность ИВК соответствует таблице 2.

Таблица 2

№ n/n	Наименование	Обозначение	Количество	Примечание
1	Комплекс измерительно-вычислительный CENTUM модели CS3000R3.		1 экз.	
2	Комплекс измерительно-вычислительный CENTUM модели CS3000R3. Руководство по эксплуатации.		1 экз.	
3	Комплекс измерительно-вычислительный CENTUM модели CS3000R3. Паспорт.		1 экз.	
4	Инструкция. ГСОЕИ. Комплекс измерительно-вычислительный СЕNTUM модели CS3000R3. Методика поверки.		1 экз.	

ПОВЕРКА

Поверка ИВК осуществляется в соответствии с документом «Инструкция. ГСОЕИ. Комплекс измерительно-вычислительный CENTUM модели CS3000R3. Методика поверки», утвержденным ГЦИ СИ ООО «СТП» в августе 2010 г.

Средства измерений для поверки:

- калибратор-вольтметр универсальный В1-28;
- магазин сопротивлений Р4831 по ГОСТ 23737-79;
- частотомер Ч3-88;
- термометр ртутный стеклянный ТЛ-4 (№1 и №2) по ГОСТ 28498-90. Межповерочный интервал - 2 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 2939-63 «Газы. Условия для определения объема».

ГОСТ 30319.0-96 «Газ природный. Методы расчета физических свойств. Общие положения».

ГОСТ 30319.1-96 «Газ природный. Методы расчета физических свойств. Определение физических свойств природного газа, его компонентов и продуктов его переработки».

ГОСТ 30319.2-96 «Газ природный. Методы расчета физических свойств. Определение коэффициента сжимаемости».

ГОСТ 30319.3-96 «Газ природный. Методы расчета физических свойств. Определение физических свойств по уравнению состояния».

ГОСТ 31369-2008 «Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава».

ГОСТ 6616-94 «Преобразователи термоэлектрические. Общие технические условия».

ГОСТ 8.586.1-2005 «ГСОЕИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Принцип метода измерений и общие требования».

ГОСТ 8.586.2-2005 «ГСОЕИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Диафрагмы. Технические требования».

ГОСТ 8.586.5-2005 «ГСОЕИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Методика выполнения измерений».

ГОСТ Р 8.595-2004 «ГСОЕИ. Масса нефти и нефтепродуктов. Общие требования к методикам выполнения измерений».

ГОСТ Р 8.625-2006 «ГСОЕИ. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний».

ПР 50.2.019-2006 «ГСОЕИ. Методика выполнения измерений при помощи турбинных, ротационных и вихревых счетчиков».

ГСССД 4-78 «Плотность, энтальпия, энтропия и изобарная теплоемкость жидкого и газообразного азота при температурах 70-1500 К и давлениях 0,1-100 МПа».

ГСССД 6-89 «Вода. Коэффициент динамической вязкости при температурах 0...800 °С и давлениях от соответствующих разряженному газу до 300 МПа».

ГСССД 8-79 «Плотность, энтальпия, энтропия и изобарная теплоемкость жидкого и газообразного воздуха при температурах 70-1500 К и давлениях 0,1-100 МПа».

ГСССД 89-85 « Азот. Коэффициенты динамической вязкости и теплопроводности при температурах 65...1000 К и давлениях от состояния разряженного газа до 200 МПа».

ГСССД 109-87 «Воздух сухой. Коэффициенты динамической вязкости и теплопроводности при температурах 150...1000 К и давлениях от соответствующих разряженному газу до 100 МПа».

ГСССД МР 147–2008 «Расчет плотности, энтальпии, показателя адиабаты и коэффициента динамической вязкости пара и водяного пара при температурах 0...1000 °С и давлениях 0,0005...100 МПа на основании таблиц стандартных справочных данных ГСССД 187-99 и ГСССД 6-89».

ГСССД 187-99 «Вода. Удельный объем и энтальпия при температурах 0...1000 °C и давлениях 0.001...1000 МПа».

ЗАКЛЮЧЕНИЕ

Тип «Комплекс измерительно-вычислительный CENTUM модели CS3000R3», зав. №01 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

Изготовитель: НПЗ ОАО «ТАИФ-НК», Республика Татарстан, 423570, г. Нижнекамск-11, а/я 20, тел.(8555)38-16-16, факс (8555)38-17-17

Главный инженер НПЗ ОАО «ТАИФ-НК»

Н.А. Гилязов

стр. 5 из 5