ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакции, утвержденной приказом Росстандарта № 1953 от 26.12.2016 г.)

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2 (далее по тексту - АИИС КУЭ) включает в себя измерительные каналы системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС OAO «Нижнекамскнефтехим» (рег. № 44695-10), системы автоматизированной информационноизмерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Нижнекамскнефтехим» с Изменением № 1 (рег. № 44695-12) и системы автоматизированной информационноизмерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2 (рег. № 44695-13) и предназначена для измерения активной и реактивной энергии на объектах ОАО «Нижнекамскнефтехим», а также для автоматизированного сбора, обработки, хранения, отображения и передачи полученной информации. Выходные данные системы могут быть использованы для коммерческих расчетов.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

Измерительные каналы (далее - ИК) № 1-11 состоят из трех уровней:

1-й уровень - измерительно-информационные комплексы (далее - ИИК), которые включают в себя трансформаторы тока (далее - ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 и ГОСТ 30206-94 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 и ГОСТ 26035-83 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень - измерительно-вычислительный комплекс электроустановки (далее - ИВКЭ), включающий в себя устройство сбора и передачи данных (далее - УСПД) СИКОН С70, устройство синхронизации времени УСВ-2 (далее - УСВ-2), технические средства приемапередачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.

3-й уровень - информационно-вычислительный комплекс (далее - ИВК), включающий в себя сервер базы данных (далее - Сервер БД) на базе промышленного компьютера Hewlet-Packard DL360, каналообразующую аппаратуру, сервер резервного копирования фирмы DELL PoweEdge R200, конвертеры интерфейсов DMC-920T, конвертеры интерфейсов Moxa Nport 5232I, автоматизированные рабочие места (далее - APM) персонала и программное обеспечение (далее - ПО) ПК «Энергосфера».

ИК № 12-221 состоят из двух уровней:

1-й уровень -ИИК, которые включают в себя ТТ по ГОСТ 7746-2001, ТН по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень -ИВК, включающий в себя Сервер БД на базе промышленного компьютера Hewlet-Packard DL360, каналообразующую аппаратуру, сервер резервного копирования фирмы DELL PoweEdge R200, конвертеры интерфейсов DMC-920T, конвертеры интерфейсов Moxa Nport 5232I, систему обеспечения единого времени (СОЕВ), APM персонала и ПО ПК «Энергосфера».

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- измерение активной и реактивной электроэнергии нарастающим итогом;
- периодический (1 раз в 30 минут) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени показаний счетчиков электрической энергии;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений в организации-участники оптового и розничного рынков электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение системы единого времени на АИИС КУЭ (коррекция времени);
- формирование и хранение данных о состоянии средств измерений («Журналы событий»);
 - передача журналов событий счетчиков.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

В ИК № 1-11 УСПД автоматически проводит сбор результатов измерений о состоянии средств измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

Цифровой сигнал с выходов УСПД, по коммутируемому каналу связи ТФССОП передается в Сервер БД, где осуществляется хранение измерительной информации, ее накопление, отображение информации по подключенным к Серверу БД устройствам, а также передача информации на АРМ ПАО «Нижнекамскнефтехим» и в организации-участники оптового рынка электроэнергии.

Передача информации в организации-участники оптового рынка электроэнергии осуществляется от центрального Сервера БД по выделенному каналу через сеть Интернет.

В ИК № 12-221 цифровой сигнал с выходов счетчиков, подключенных к одноканальной проводной кодовой линии связи RS-485, через конвертер интерфейсов Моха Nport 5150 идет на конвертер DMC-920T, далее через каналообразующую аппаратуру передается в Сервер БД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление, отображение информации по подключенным к Серверу БД устройствам, а также передача информации на АРМ ПАО «Нижнекамскнефтехим» и в организации-участники оптового рынка электроэнергии.

АИИС КУЭ ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2 имеет возможность взаимодействовать с системой автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности АИИС КУЭ ОАО «ТГК-16» (рег. № 45275-10), посредством информационного обмена по электронной почте. Полученные данные в хml формате от сервера АИИС КУЭ ОАО «ТГК-16», импортируются в БД АИИС КУЭ ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2.

АИИС КУЭ ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2 имеет возможность взаимодействовать с системой автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ТГК-16» (Рег. № 64781-16), посредством информационного обмена по электронной почте. Полученные данные в хml формате от сервера АИИС КУЭ ОАО «ТГК-16», импортируются в БД АИИС КУЭ ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2.

АИИС КУЭ ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2 имеет возможность взаимодействовать с системой автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Сетевая компания» НкЭС ПС 220 кВ «Бегишево» (Рег. № 64716-16), посредством информационного обмена по электронной почте. Полученные данные в хml формате от сервера АИИС КУЭ ОАО «Сетевая компания» НкЭС ПС 220 кВ «Бегишево», импортируются в БД АИИС КУЭ ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2.

АИИС КУЭ ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2 имеет возможность взаимодействовать с системой автоматизированной информационно-измерительной коммерческого учета электроэнергии ОАО «Сетевая компания» НкЭС ПС 220 кВ Нижнекамская, ПС 220 кВ Заводская (Рег. № 64850-16), посредством информационного обмена по электронной почте. Полученные данные в хml формате от сервера АИИС КУЭ ОАО «Сетевая компания» НкЭС ПС 220 кВ Нижнекамская, ПС 220 кВ Заводская, импортируются в БД АИИС КУЭ ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2.

Передача информации от АИИС КУЭ в ПАК ОАО «АТС» с электронно-цифровой подписью субъекта ОРЭМ, а также в другие смежные субъекты ОРЭМ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в ОАО «АТС», ОАО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет СОЕВ, которая охватывает уровень ИИК, ИВКЭ и ИВК.

ИК № 1-11 оснащены УСВ-2, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов УСВ-2 не более ±1 с. УСВ-2 обеспечивает автоматическую коррекцию часов УСПД. Коррекция часов Сервера БД проводится при расхождении часов Сервера БД и УСПД более чем на ±1 с. Коррекция часов УСПД проводится при расхождении часов УСПД и времени УСВ-2 более чем на ±1 с, пределы допускаемой абсолютной погрешности синхронизации часов УСПД и времени УСВ-2 не более ±1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ±2 с.

ИК № 12-222 оснащены устройством синхронизации времени (далее УСВ), принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). УСВ обеспечивает автоматическую коррекцию часов Сервера БД. Коррекция часов Сервера БД проводится при расхождении часов Сервера БД и времени приемника более чем на ±1 с, пределы допускаемой абсолютной погрешности синхронизации часов сервера БД и времени УСВ не более ±1 с. Часы счетчиков синхронизируются от часов Сервера БД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и Сервера БД более чем на ±2 с.

Предел допускаемой абсолютной погрешности хода часов АИИС КУЭ ±5 с/сутки.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии 7.1, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту ПО и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 - Метрологические значимые модули ПО

Идентификационные признаки	Значение					
Идентификационное наименование ПО	ПК «Энергосфера»					
идентификационное наименование по	Библиотека pso_metr.dll					
Номер версии (идентификационный номер) ПО	1.1.1.1					
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B					
Алгоритм вычисления цифрового	MD5					
идентификатора ПО	WIDS					

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

Измерительные компоненты	I Метрол	OFILITOORITO
	-	огические
		истики ИК
	Границы	Границы
	интервала	интервала
	основной	относи-
	относи-	тельной
Наименование объекта ТН Счетчик УСПД Сервер БД электро энергии	тельной	погрешно-
Наименование электро	погреш-	сти из-
объекта ТН Счетчик УСПД Сервер энергии	ности из-	мерений,
Ξ	мерений,	$(\pm\delta)$, %, B
	$(\pm\delta)$, %,	рабочих
	при дове-	условиях,
	рительной	при дове-
	вероятно-	рительной
	сти	вероятно-
	P=0,95	сти Р=0,95
1 2 3 4 5 6 7 8	9	10
ПС Нижнекамская		
ТВГ-110 НКФ-110-57 У1 СЭТ-4ТМ.03М СИКОН НР активна	0,8	1,6
$1.1 1.08-110 \text{ kg}$ $1.8 \text{ kg} \pm 0.28$ $1.8 \text{ kg} \pm 0.5$		
Т ОВ-110 КВ	я 1,8	2,6
НКФ-110-57 У1		
ТР 110/50	0.0	1.6
2 ОВ-110 кВ ТВ-110/50 Ктн 110000:√3/100:√3 СЭТ-4ТМ.03М СИКОН НР активна	0,8	1,6
	_ 1.0	2.6
Ктт 1000/1 Кл. т. 0,2 Кл. т. 0,2 реактивн	я 1,8	2,6
K _{TH} 110000:√3/100:√3		
TR 110 HV 0 110 57 V1	1,1	3,0
3 ВЛ-110 кВ «Нижнекам-	ĺ	
3 ская-ГПП 1,2,9» $^{1.1}$ $^{1.0,23}$ $^{1.0,1.1}$ $^{1.0,23}$ $^{1.0,1.1}$ $^{1.0,23}$ $^{1.0,1.1}$ $^{1.0,23}$	я 2,6	4,6

1	2	3	4	5	6	7	8	9	10		
1	2	TB-110	НАМИ-110 УХЛ 1	3	0		активная	1,1	3,0		
4	ВЛ-110 кВ «Нижнекам-	Кл. т. 0,5	Кл. т. 0,2	СЭТ-4TM.03М	СИКОН	HP	активная	1,1	3,0		
4	ская-ГПП 3, 5»	Кл. 1. 0,3 Ктт 500/1	Кл. 1. 0,2 Ктн 110000: √3/100: √3	Кл. т. 0,2S/0,5	C70	DL360	реактивная	2,6	4,6		
		ТФНД-110М-ІІ	НКФ-110-57 У1				активная	1,1	3,0		
5	ВЛ-110 кВ «Нижнекам-	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	СИКОН			HP	активная	1,1	3,0
	ская-ГПП 6, 7»	Кл. 1. 0,3 Ктт 750/1	Кл. 1. 0,3 Ктн 110000:√3/100:√3	Кл. т. 0,2S/0,5	C70	DL360	реактивная	2,6	4,6		
		TBΓ-110	НКФ-110-57 У1				активная	1,1	3,0		
6	ВЛ-110 кВ «Нижнекам-	Кл. т. 0,2S	Кл. т. 0,5	СЭТ-4TM.03М	СИКОН	HP	активная	1,1	3,0		
	ская-ГПП 10»	Ктт 1000/1	Ктн 110000:√3/100:√3	Кл. т. 0,2S/0,5	C70	DL360	реактивная	2,6	4,6		
		ΤΒΓ-110	НКФ-110-57 У1				активная	1,1	3,0		
7	ВЛ-110 кВ «Нижнекам-	Кл. т. 0,2S	Кл. т. 0,5	СЭТ-4TM.03М	СИКОН	HP	активная	1,1	3,0		
,	ская-ПАВ 1»	Ктт 1000/1	Ктн 110000:√3/100:√3	Кл. т. 0,2S/0,5	C70	DL360	реактивная	2,6	4,6		
		ΤΒΓ-110	НКФ-110-57 У1				активная	0,8	1,6		
8	ВЛ-110 кВ «Нижнекам-	Кл. т. 0,2	Кл. т. 0,5	СЭТ-4ТМ.03М	СИКОН	HP	активнал	0,0	1,0		
	ская-Этилен-2»	Ктт 1000/1	Ктн 110000:√3/100:√3	Кл. т. 0,2S/0,5	C70	DL360	реактивная	1,8	2,6		
		ТПЛ-10	НАМИ-10-95				активная	1,1	3,0		
9	Ф-17	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	СИКОН	HP	ukiiibiiu	1,1	3,0		
	1 1,	Ктт 300/5	Ктн 10000/100	Кл. т. 0,2S/0,5	C70	C70 DL36	DL360	реактивная	2,6	4,6	
		ТПЛ-10	НТМИ-10-66У3		~~~~		активная	1,1	3,0		
10	Ф-24	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	СИКОН	HP	un i i i i i i i i i i i i i i i i i i i	1,1	2,0		
	1 2.	Ктт 300/5	Ктн 10000/100	Кл. т. 0,2S/0,5	C70	DL360	реактивная	2,6	4,6		
	DH 440 D H	ТФЗМ-110Б	НКФ 110 57 V1	CDT 4TD 600 646	CITICOLI	IID	активная	1,1	3,0		
11	ВЛ-110 кВ «Нижнекам-	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M.16		HP		,	- 7-		
	ская-Очистные»	Ктт 1000/1	Ктн $110000:\sqrt{3}/100:\sqrt{3}$	Кл. т. 0,2S/0,5	C70	DL360	реактивная	2,3	5,1		
			1 про	мзона	1		1	,	,		
	ГПП-1										
		JS10b-2	UZ6T-1	COT 4TM 02M		HP	активная	1,1	3,0		
12	ввод 1	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_						
		Ктт 3000/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6		
		JS10b-2	UZ6T-1	СЭТ-4TM.03М		HP	активная	1,1	3,0		
13	ввод 2	Кл. т. 0,5	Кл. т. 0,5		_	DL360					
		Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL300	реактивная	2,6	4,6		

1	2	3	4	5	6	7	8	9	10
		JS10b-2	UZ6T-1	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
14	ввод 3	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		JS10b-2	UZ6T-1	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
15	ввод 4	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
16	TCH 1	Кл. т. 0,5S Ктт 150/5	-	Кл. т. 0,5S/1,0	-	DL360	реактивная	2,7	5,7
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
17	TCH 2	Кл. т. 0,5S Ктт 150/5	-	Кл. т. 0,5S/1,0	-	DL360	реактивная	2,7	5,7
		JPZ10-2T	UZ6T-1	CЭT-4TM.03M		HP	активная	1,1	3,0
18	яч. 11	Кл. т. 0,5 Ктт 400/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		JPZ10-2T	UZ6T-1	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
19	яч. 43	Кл. т. 0,5 Ктт 400/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
			ΓΙ	IП-2					
		JS10b-2	ЗНИОЛ-6 УЗ	СЭТ-4TM.03М		HP	активная	1,1	3,0
20	ввод 1	Кл. т. 0,5 Ктт 3000/5	Кл.т.0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		JS10b-2	UZ6T-1	СЭТ-4TM.03М		HP	активная	1,1	3,0
21	ввод 2	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		JS10b-2	UZ6T-1	СЭТ-4TM.03М		HP	активная	1,1	3,0
22	ввод 3	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,28/0,5	-	DL360	реактивная	2,6	4,6
		JS10b-2	ЗНИОЛ-6 УЗ	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
23	ввод 4	Кл. т. 0,5 Ктт 3000/5	Кл.т.0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
24	TCH 1	Кл. т. 0,5S Ктт 150/5	-	Кл. т. 0,5S/1,0	-	DL360	реактивная	2,7	5,7

1	<u>2</u>	3	4	5	6	7	8	9	10
25	TCH 2	ТОП-0,66 Кл. т. 0,5S	_	СЭТ-4ТМ.03М.09	_	HP	активная	1,0	3,3
25	10112	Ктт 150/5		Кл. т. 0,5S/1,0		DL360	реактивная	2,7	5,7
		ТЛК-10-5	ЗНИОЛ-6 УЗ	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
26	яч.14	Кл. т. 0,5S Ктт 300/5	Кл.т.0,5 Ктн 6000:√3/100:√3	Кл. т. 0,28/0,5	-	DL360	реактивная	2,6	4,7
		ТЛК-10-5	ЗНИОЛ-6 УЗ	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
27	яч.34	Кл. т. 0,5S Ктт 300/5	Кл.т.0,5 Ктн 6000:√3/100:√3	Кл. т. 0,28/0,5	-	DL360	реактивная	2,6	4,7
			ΓΊ	ПП-3					
		JS10b-2	UZ6T-1	СЭТ-4TM.03М		HP	активная	1,1	3,0
28	ввод 1	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,28/0,5	-	DL360	реактивная	2,6	4,6
		JS10b-2	UZ6T-1	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
29	ввод 2	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,28/0,5	-	DL360	реактивная	2,6	4,6
		JS10b-2	UZ6T-1	СЭТ-4TM.03М		HP	активная	1,1	3,0
30	ввод 3	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,28/0,5	-	DL360	реактивная	2,6	4,6
		JS10b-2	UZ6T-1	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
31	ввод 4	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
32	TCH 1	Кл. т. 0,5S Ктт 150/5	-	Кл. т. 0,5S/1,0	-	DL360	реактивная	2,7	5,7
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
33	TCH 2	Кл. т. 0,5S Ктт 150/5	-	Кл. т. 0,5\$/1,0	-	DL360	реактивная	2,7	5,7
				П-5		1			
		ТЛШ-10-У3	HТМИ-6-66	СЭТ-4ТМ.03М		НР	активная	1,1	3,0
34	ввод 1	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000/100	Кл. т. 0,28/0,5	-	DL360	реактивная	2,6	4,6

1	<u>2</u>	3	4	5	6	7	8	9	10	
1	2		HТМИ-6-66		0	-	активная	1,1	3,0	
35	ввод 2	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	активнал	1,1	3,0	
33	ввод 2	Ктт 3000/5	Ктн 6000/100	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6	
		ТЛШ-10-У3	НТМИ-6-66	COT ATLANA		TID	активная	1,1	3,0	
36	ввод 3	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_	HP		,	- , -	
		Ктт 3000/5	Ктн 6000/100	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6	
		ТЛШ-10-У3	НТМИ-6-66	СЭТ-4ТМ.03М		HP	активная	1,1	3,0	
37	ввод 4	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360				
		Ктт 3000/5	Ктн 6000/100	KJI. 1. 0,25/0,5		DL300	реактивная	2,6	4,6	
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3	
38	TCH 1	Кл. т. 0,5S	-	Кл. т. 0,5S/1,0	-	DL360				
		Ктт 150/5		101. 1. 0,557 1,0		DESOU	реактивная	2,7	5,7	
20	TI CYY A	ТОП-0,66		СЭТ-4ТМ.03М.09		HP	активная	1,0	3,3	
39	TCH 2	Кл. т. 0,5S	-	Кл. т. 0,5S/1,0	-	DL360		2.5		
		Ктт 150/5		,			реактивная	2,7	5,7	
	ГПП-4									
40	1	ТПШЛ-10	UZ10-1T	СЭТ-4TM.03М		HP	активная	1,1	3,0	
40	ввод 1	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2.6	4.6	
		Ктт 3000/5	Ктн 6000:√3/100:√3	, ,			реактивная	2,6	4,6	
41	2	ТПШЛ-10	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0	
41	ввод 2	Кл. т. 0,5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360		2.6	1.6	
		Ктт 3000/5 ТПШЛ-10	UZ10-1T				реактивная	2,6	4,6 3,0	
42	pp 2 7 2	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4ТМ.03М		HP	активная	1,1	3,0	
42	ввод 3	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6	
		ТПШЛ-10	UZ10-1T				активная	1,1	3,0	
43	ввод 4	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	активная	1,1	3,0	
73	ввод т	Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6	
		ТПШЛ-10	UZ10-1T				активная	1,1	3,0	
44	ввод 5	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_	HP	animman	1,1	5,0	
''	высд о	Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6	
		ТПШЛ-10	UZ10-1T	COT ATT COOLS		TTD	активная	1,1	3,0	
45	ввод 6	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	-	HP		-,-	- , -	
	7 1	Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6	

1	<u>2</u>	3	4	5	6	7	8	9	10
1	2	ТПШЛ-10	UZ10-1T		0		активная	1,1	3,0
46	ввод 7	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_	HP		_,_	2,0
		Ктт 3000/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	CЭT-4TM.03M		HP	активная	1,1	3,0
47	ввод 8	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		_	
		Ktt 3000/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	161. 1. 0,25, 0,5		D 2500	реактивная	2,6	4,6
40	TOLL 1	ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
48	TCH 1	Кл. т. 0,5S	-	Кл. т. 0,5Ѕ/1,0	-	DL360		2.7	57
		Ктт 150/5 ТОП-0,66					реактивная	2,7 1,0	5,7 3,3
49	TCH 2	ТОП-0,66 Кл. т. 0,5S		СЭТ-4ТМ.03М.09		HP	активная	1,0	3,3
47	10112	Кл. 1. 0,33 Ктт 150/5	_	Кл. т. 0,5Ѕ/1,0	-	DL360	реактивная	2,7	5,7
		ТОП-0,66					активная	1,0	3,3
50	TCH 3	Кл. т. 0,5S	-	CЭT-4TM.03M.09	_	HP	W10111211W1	1,0	2,0
		Ктт 150/5		Кл. т. 0,5Ѕ/1,0		DL360	реактивная	2,7	5,7
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
51	TCH 4	Кл. т. 0,5S	-	Кл. т. 0,5S/1,0	-	DL360			
		Ктт 150/5		101. 1. 0,55/1,0		DLS00	реактивная	2,7	5,7
		JPZ10-2T	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
52	яч.18	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2 -	4 -
		KTT 1500/5	Ктн 6000:√3/100:√3				реактивная	2,6	4,6
53	20	JPZ10-2T	UZ10-1T	СЭТ-4TM.03М		HP	активная	1,1	3,0
55	яч.30	Кл. т. 0,5 Ктт 1500/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2.6	4,6
		ABK-10	UZ10-1T				активная	2,6 1,1	3,0
54	яч.32	Кл. т. 0,5	Кл. т. 0 . 5	CЭT-4TM.03M	_	HP	активная	1,1	3,0
	N 1.32	Ктт 300/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		1111 000/0		П-6			pourting	- , ·	.,.
		ТПШЛ-10	UZ10-1T			IID	активная	1,1	3,0
55	ввод 1	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	-	HP		,	Í
		Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	CЭT-4TM.03M		HP	активная	1,1	3,0
56	ввод 2	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		_	
		Ктт 3000/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	101. 1. 0,20/0,3		DL300	реактивная	2,6	4,6

1	2	3	4	5	6	7	8	9	10
		ТПШЛ-10	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
57	ввод 3	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
58	ввод 4	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
59	ввод 5	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
60	ввод 6	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	ı	DL360	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
61	ввод 7	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	ı	DL360	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	CЭT-4TM.03M		HP	активная	1,1	3,0
62	ввод 8	Кл. т. 0,5 Ктт 3000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		ТОП-0,66		СЭТ-4ТМ.03М.09		HP	активная	1,0	3,3
63	TCH 1	Кл. т. 0,5S Ктт 150/5	-	Кл. т. 0,5S/1,0	ı	DL360	реактивная	2,7	5,7
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
64	TCH 2	Кл. т. 0,5S Ктт 150/5	-	Кл. т. 0,5S/1,0	-	DL360	реактивная	2,7	5,7
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
65	TCH 3	Кл. т. 0,5Ѕ	-	Кл. т. 0,5\$/1,0	-	DL360			
		Ктт 150/5		12. 2. 2,2.2. 2,0			реактивная	2,7	5,7
66	TCH 4	TOΠ-0,66		СЭТ-4ТМ.03М.09		HP	активная	1,0	3,3
66	1СП 4	Кл. т. 0,5S Ктт 150/5	-	Кл. т. 0,5Ѕ/1,0	-	DL360	реактивная	2,7	5,7
		JPZ10-2T	UZ10-1T	CЭT-4TM.03M		HP	активная	1,1	3,0
67	яч.3	Кл. т. 0,5 Ктт 1500/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,28/0,5	-	DL360	реактивная	2,6	4,6

1	<u>2</u>	3	4	5	6	7	8	9	10
1	2	JPZ10-2T	UZ10-1T		U		активная	1,1	3,0
68	яч.40	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	активная	1,1	3,0
	и 1.40	Ктт 1500/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		JPZ10-2T	UZ10-1T	CDT 4TM 02M		IID	активная	1,1	3,0
69	яч.б	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_	HP		,	,
		Ктт 1500/5	Ктн $6000:\sqrt{3/100}:\sqrt{3}$	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		JPZ10-2T	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
70	яч.25	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 1500/5	Ктн 6000:√3/100:√3	KJI. 1. 0,25/0,5		DL300	реактивная	2,6	4,6
		JPZ10-2T	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
71	яч.54	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 1500/5	Ктн 6000:√3/100:√3	141. 1. 0,25, 0,5		22300	реактивная	2,6	4,6
7.0	0.0	JPZ10-2T	UZ10T-1	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
72	яч.90	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2 -	4 -
		KTT 1500/5	Ктн 6000:√3/100:√3				реактивная	2,6	4,6
70	~~	ТОЛ-10	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
73	яч.55	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2.6	1.0
		Ктт 400/5 ТОЛ-10	Kth 6000:√3/100:√3				реактивная	2,6	4,6
74	яч.85		UZ10-1T Кл. т. 0,5	СЭТ-4TM.03М		HP	активная	1,1	3,0
/4	хч.оэ	Кл. т. 0,5 Ктт 400/5	Кл. т. 0,3 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	BOOKENIBIOG	2,6	4,6
		KTT 400/3		<u> </u> Π-7			реактивная	2,0	4,0
	=	ТПШЛ-10	VSK I 10b				активная	1,1	3,0
75	ввод 1	Кл. т. 0 . 5	Кл. т. 0,5	СЭТ-4TM.03М		HP	активная	1,1	3,0
13	ввод 1	Кл. 1. 0,5	Кл. 1. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	_	DL360	реактивная	2,6	4,6
		ТПШЛ-10	VSK I 10b				активная	1,1	3,0
76	ввод 2	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	активная	1,1	3,0
/0	ввод 2	Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10	VSK I 10b	COT ATLANA		110	активная	1,1	3,0
77	ввод 3	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_	HP	, , , , , , , , , , , , , , , , , , ,	-,-	2,0
	r 1 -	Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10	VSK I 10b			IID	активная	1,1	3,0
78	ввод 4	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	-	HP DL360		,	,
		Ктт 3000/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	Кл. т. 0,2S/0,5		DL300	реактивная	2,6	4,6

1	2	3	4	5	6	7	8	9	10
79	ввод 5	ТПШЛ-10 Кл. т. 0,5 Ктт 3000/5	ЗНОЛ-СЭЩ-6 Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1	3,0 4,6
80	ввод б	ТПШЛ-10 Кл. т. 0,5 Ктт 3000/5	ЗНОЛ-СЭЩ-6 Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	_	HP DL360	активная	1,1	3,0
81	ввод 7	ТПШЛ-10 Кл. т. 0,5 Ктт 3000/5	ЗНОЛ-СЭЩ-6 Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1	3,0
82	ввод 8	ТПШЛ-10 Кл. т. 0,5 Ктт 3000/5	ЗНОЛ-СЭЩ-6 Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
83	ТСН 1	ТОП-0,66 Кл. т. 0,5S Ктт 150/5	-	СЭТ-4ТМ.03М.09 Кл. т. 0,5S/1,0	-	HP DL360	активная	1,0 2,7	3,3 5,7
84	TCH 2	ТОП-0,66 Кл. т. 0,5S Ктт 150/5	-	СЭТ-4ТМ.03М.09 Кл. т. 0,5S/1,0	-	HP DL360	активная	1,0 2,7	3,3 5,7
85	ТСН 3	ТОП-0,66 Кл. т. 0,5S Ктт 150/5	-	СЭТ-4ТМ.03М.09 Кл. т. 0,5S/1,0	-	HP DL360	активная	1,0	3,3 5,7
86	ТСН 4	ТОП-0,66 Кл. т. 0,5S Ктт 150/5	-	СЭТ-4ТМ.03М.09 Кл. т. 0,5S/1,0	-	HP DL360	активная реактивная	1,0 2,7	3,3 5,7
87	яч.8	АВК-10 Кл. т. 0,5 Ктт 400/5	VSK I 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,6
88	яч.40	АВК-10 Кл. т. 0,5 Ктт 400/5	VSK I 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,6
89	яч.44	АВК-10 Кл. т. 0,5 Ктт 400/5	VSK I 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,6

1	<u>2</u>	3	4	5	6	7	8	9	10
90	яч.60	ТЛК-10-7 Кл. т. 0,5	ЗНОЛ-СЭЩ-6 Кл. т. 0,5	СЭТ-4ТМ.03	<u> </u>	HP	активная	1,1	3,0
	<i>x</i> 1.00	Ктт 1000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТЛК-10-7	ЗНОЛ-СЭЩ-6	СЭТ-4ТМ.03		HP	активная	1,1	3,0
91	яч.88	Кл. т. 0,5 Ктт 1000/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		ТЛК-10-7	3НОЛ-СЭЩ-6				активная	1,1	3,0
92	яч.55	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4ТМ.03		HP	активная	1,1	3,0
92	ич. <i>ЭЭ</i>	Кл. 1. 0,5 Ктт 1000/5	Кл. 1. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	_	DL360	реактивная	2,6	4,6
		ТЛК-10-7	3НОЛ-СЭЩ-6				активная	1,1	3,0
93	яч.85	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4ТМ.03	_	HP	активнал	1,1	3,0
)3	и 1.05	Ктт 1000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ABK-10	ЗНОЛ-СЭЩ-6	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
94	яч.54	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 150/5	Ктн 6000:√3/100:√3	KJI. T. U,28/U,3		DL300	реактивная	2,6	4,6
		АВК-10	ЗНОЛ-СЭЩ-6	CЭT-4TM.03M		HP	активная	1,1	3,0
95	яч.92	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 200/5	Ктн 6000:√3/100:√3	KJI. 1. 0,25/0,5		DL300	реактивная	2,6	4,6
		АВК-10	ЗНОЛ-СЭЩ-6	CЭT-4TM.03M		HP	активная	1,1	3,0
96	яч.94	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 400/5	Ктн 6000:√3/100:√3	,		DL300	реактивная	2,6	4,6
				П-9		•			
		ТПШЛ-10	UZ10-1T	CЭT-4TM.03M		HP	активная	1,1	3,0
97	ввод 1	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 3000/5	Ктн 6000:√3/100:√3	KJI. 1. 0,25/0,5		DL300	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	CЭT-4TM.03M		HP	активная	1,1	3,0
98	ввод 2	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 3000/5	Ктн 6000:√3/100:√3	131. 1. 0,25/0,3		DL300	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	CЭT-4TM.03M	M HP	активная	1,1	3,0	
99	ввод 3	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 3000/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	131. 1. 0,25/0,3		DL300	реактивная	2,6	4,6

1	<u> 2</u>	3	4	5	6	7	8	9	10
1		ТПШЛ-10	UZ10-1T				активная	1,1	3,0
100	ввод 4	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_	HP		,	- , -
	, ,	Ктт 3000/5	Ктн $6000:\sqrt{3/100}:\sqrt{3}$	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,3
101	TCH 1	Кл. т. 0,5S	-	Кл. т. 0,5S/1,0	-	DL360			
		Ктт 150/5		101. 1. 0,55/1,0		DESOU	реактивная	2,7	5,7
		ТОП-0,66		СЭТ-4TM.03M.09		HP	активная	1,0	3,3
102	TCH 2	Кл. т. 0,5S	-	Кл. т. 0,5S/1,0	-	DL360		2.7	
		KTT 150/5	117710 1TD	, , , , , , , , , , , , , , , , , , , ,			реактивная	2,7	5,7
102	4	JPZ10-2T	UZ10-1T	СЭТ-4TM.03M		HP	активная	1,1	3,0
103	яч. 4	Кл. т. 0,5 Ктт 400/5	Кл. т. 0,5 Ктн 6000/:√3100:√3	Кл. т. 0,2S/0,5	-	DL360	***************************************	2,6	4,6
		ABK-10	UZ10-1T				реактивная активная	1,1	3,0
104	яч. 8	АБК-10 Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	активная	1,1	3,0
104	и 1. О	Ктт 400/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ABK-10	UZ10-1T	GD T 4T (00) (активная	1,1	3,0
105	яч. 27	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_	HP		_,_	2,0
		Ктт 400/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		JPZ10-2T	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
106	яч. 18	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 1500/5	Ктн 6000:√3/100:√3	KJI. 1. 0,25/0,5		DL300	реактивная	2,6	4,6
		JPZ10-2T	UZ10-1T	CЭT-4TM.03M		HP	активная	1,1	3,0
107	яч. 39	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 1500/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$, ,		2200	реактивная	2,6	4,6
		1710.161		I-49		T	Т	4.4	2.0
100	0	AB12-MA	4MR12	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
108	яч.8	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2.6	1.6
		Ктт 200/5 AB12-MA	KTH 6000:√3/100:√3	, ,			реактивная	2,6	4,6
109	яч.5	АВ12-МА Кл. т. 0,5	4MR12 Кл. т. 0,5	СЭТ-4TM.03M		HP	активная	1,1	3,0
109	С. РК	Кл. т. 0,5 Ктт 200/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		AB12-MA	4MR12				активная	1,1	3,0
110	яч.б	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_	HP	активпал	1,1	5,0
110	и 1.0	Ктт 200/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6

	одолжение таолицы 2	1				•			
1	2	3	4	5	6	7	8	9	10
		AB12-MA	4MR12	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
111	яч. 13	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 200/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$, ,		DL300	реактивная	2,6	4,6
				T-9					
		ABK-10	UZ6T-1	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
112	яч. 12	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5		DL360			
		Ктт 200/5	Ктн 6000/100:√3	10,1. 1. 0,25/0,5		DLS00	реактивная	2,6	4,6
		ABK-10	UZ6T-1	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
113	яч. 13	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5		DL360			
		Ктт 200/5	Ктн 6000:√3/100:√3			DLS00	реактивная	2,6	4,6
				-36		1		<u> </u>	
		ТОЛ-10-1	VSK I 10b	СЭТ-4TM.03М		HP	активная	1,1	3,0
114	яч.5	Кл. т. 0,5S	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 750/5	Ктн 6000:√3/100:√3	101. 1. 0,25/ 0,5		DESCO	реактивная	2,6	4,7
		ТОЛ-10-1	UZ10 -1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
115	яч.49	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		_	
		Ктт 750/5	Ктн 6000:√3/10:√3	101. 1. 0,25/ 0,5		DESCO	реактивная	2,6	4,6
		ТЛК-10-5У3	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
116	яч. 22	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		_	
		Ктт 600/5	Ктн 6000:√3/100:√3	161. 1. 0,25, 0,5		BESSO	реактивная	2,6	4,6
		ТЛК-10-5У3	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
117	яч. 32	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 600/5	Ктн $6000:\sqrt{3/100}:\sqrt{3}$, , ,		22000	реактивная	2,6	4,6
		1.774.40		-38/1	ı	1	1		2.0
440	•	ABK-10	VSK I-10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
118	яч.26	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2.5	
		KTT 200/5	Ктн 6000:√3/100:√3			32000	реактивная	2,6	4,6
110	25	ТОЛ-СЭЩ-10-11	VSK I-10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
119	яч.25	Кл. т. 0,2S	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 200/5	Ктн 6000:√3/100:√3			32000	реактивная	2,6	4,6
1.00		ТОЛ-СЭЩ-10-11	VSK I 10b	СЭТ-4ТМ.03М		HP	активная	0,8	1,6
120	яч.4	Кл. т. 0,2S	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 200/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	131. 1. 0,25, 0,5		22300	реактивная	1,8	2,6

110	одолжение таолицы 2		·	T .	1			_ 1	
1	2	3	4	5	6	7	8	9	10
		ТОЛ-СЭЩ-10-11	VSK I 10b	СЭТ-4TM.03M		HP	активная	0,8	1,6
121	яч.27	Кл. т. 0,2S	Кл. т. 0,5		-				
		Ктт 200/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	Кл. т. 0,2S/0,5		DL360	реактивная	1,8	2,6
		ТОЛ-СЭЩ-10-11	VSK I 10b	СЭТ-4ТМ.03М		HP	активная	0,8	1,6
122	яч.5	Кл. т. 0,2S	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 200/5	Ктн 6000:√3/100:√3	KJI. T. 0,28/0,3		DL300	реактивная	1,8	2,6
		ТОЛ-СЭЩ-10-11	VSK I 10b	СЭТ-4ТМ.03М		HP	активная	0,8	1,6
123	яч.23	Кл. т. 0,2S	Кл. т. 0,5		-	DL360			
		Ктт 200/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL300	реактивная	1,8	2,6
		ABK-10	VSK I-10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
124	яч.3	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 200/5	Ктн 6000:√3/100:√3	KJI. T. 0,28/0,3		DL300	реактивная	2,6	4,6
			2 про	мзона					
			ГП	Π-1					
		ТПШЛ-10	UZ10-1T	СЭТ-4TM.03M		HP	активная	1,1	3,0
125	ввод 1	Кл. т. 0,5	Кл. т. 0,5		-	DL360			
		Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL300	реактивная	2,6	4,6
		ТПШЛ-10	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
126	ввод 2	Кл. т. 0,5	Кл. т. 0,5		-				
		Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10	VSK 10b	СЭТ-4TM.03M		HP	активная	1,1	3,0
127	ввод 3	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 3000/5	Ктн 6000:√3/100:√3	KJI. 1. 0,25/0,5		DL300	реактивная	2,6	4,6
			UZ10-1T						
		ТПШЛ-10	Кл. т. 0,5				OKETIDITO 6	1,1	3,0
128	ppor A		Ктн 6000:√3/100:√3	СЭТ-4TM.03М		HP	активная	1,1	3,0
128	ввод 4	Кл. т. 0,5	VSK 10b	Кл. т. 0,2S/0,5	-	DL360	*	2.6	16
		Ктт 3000/5	Кл. т. 0,5				реактивная	2,6	4,6
			Ктн $6000:\sqrt{3}/100:\sqrt{3}$						
		1	L	l.	L	L	ı		

11pc	должение таолицы 2	2	1						1.0
1	2	3	4	5	6	7	8	9	10
129	ввод 5	ТПШЛ-10 Кл. т. 0,5 Ктт 3000/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3 UZ10-1T Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
130	ввод б	ТПШЛ-10 Кл. т. 0,5 Ктт 3000/5	UZ10-1Т Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,6
131	ввод 7	ТПШЛ-10 Кл. т. 0,5 Ктт 3000/5	UZ10-1T Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,6
132	ввод 8	ТПШЛ-10 Кл. т. 0,5 Ктт 3000/5	UZ10-1Т Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,6
133	TCH 1	ТОП-0,66 Кл. т. 0,5S Ктт 200/5	-	СЭТ-4ТМ.03М.09 Кл. т. 0,5S/1,0	-	HP DL360	активная реактивная	1,0 2,7	3,3 5,7
134	TCH 2	ТОП-0,66 Кл. т. 0,5S Ктт 200/5	-	СЭТ-4ТМ.03М.09 Кл. т. 0,5S/1,0	-	HP DL360	активная реактивная	1,0 2,7	3,3 5,7
135	ТСН 3	ТОП-0,66 Кл. т. 0,5S Ктт 200/5	-	СЭТ-4ТМ.03М.09 Кл. т. 0,5S/1,0	-	HP DL360	активная	1,0 2,7	3,3 5,7
136	TCH 4	ТОП-0,66 Кл. т. 0,5S Ктт 200/5	-	СЭТ-4ТМ.03М.09 Кл. т. 0,5S/1,0	-	HP DL360	активная	1,0 2,7	3,3 5,7
137	яч. 16	JPZ10-2TA Кл. т. 0,5 Ктт 400/5	UZ10-1Т Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,6

110	одолжение таолицы 2				T				
1	2	3	4	5	6	7	8	9	10
138	яч. 36	JPZ10-2T Кл. т. 0,5 Ктт 400/5	UZ10-1T Кл. т. 0,5 Ктн 6000:√3/100:√3 VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
			1	T 2					
				Π-2	T	T	1		
		ТПШЛ-10	VSK 10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
139	ввод 1	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 3000/5	Ктн 6000:√3/100:√3	KJI. 1. 0,25/0,5		DL300	реактивная	2,6	4,6
		ТПШЛ-10	VSK 10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
140	ввод 2	Кл. т. 0,5	Кл. т. 0,5		_				
	, ,	Ктт 3000/5	Ктн $6000:\sqrt{3/100}:\sqrt{3}$	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10	VSK 10b				активная	1,1	3,0
141	ввод 3	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	uni i i i i i i i i i i i i i i i i i i	1,1	2,0
171	ввод 3	Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10	VSK 10b				+	1,1	3,0
142	77.7			СЭТ-4ТМ.03М		HP	активная	1,1	3,0
142	ввод 4	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2.6	1.0
		Ktt 3000/5	Ктн 6000:√3/100:√3				реактивная	2,6	4,6
	_	ТПШЛ-10	VSK 10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
143	ввод 5	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 3000/5	Ктн $6000:\sqrt{3}/100:\sqrt{3}$	101. 1. 0,25/0,5		DL 300	реактивная	2,6	4,6
			UZ10-1T						
		ТПШЛ-10	Кл. т. 0,5				OVERTANDA O	1.1	2.0
144			Ктн 6000:√3/100:√3	СЭТ-4TM.03М		HP	активная	1,1	3,0
144	ввод б	Кл. т. 0,5	VSK 10b	Кл. т. 0,2S/0,5	-	DL360		2.6	1.6
		Ктт 3000/5	Кл. т. 0,5	, ,			реактивная	2,6	4,6
			Ктн $6000:\sqrt{3}/100:\sqrt{3}$						
		ТПШЛ-10	VSK 10b	GD # 4 # 7 2 2 2 2		-	активная	1,1	3,0
145	ввод 7	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4ТМ.03М	_	HP	dittibilan	-,-	2,0
1 73	ввод /	Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10	VSK 10b				† *	1,1	3,0
146	ppo 7 9	Кл. т. 0,5	V3K 100 Кл. т. 0,5	СЭТ-4TM.03М		HP	активная	1,1	3,0
140	ввод 8	,	. /	Кл. т. 0,2S/0,5	-	DL360		2.6	16
		Ктт 3000/5	Ктн 6000:√3/100:√3	, , , , , , , , , , , , , , , , , , ,			реактивная	2,6	4,6

1	2	3	4	5	6	7	8	9	10
147	ТСН 1	ТОП-0,66 Кл. т. 0,5S	-	СЭТ-4ТМ.03М.09 Кл. т. 0,5S/1,0	-	HP DL360	активная	1,0	3,3
		Ктт 200/5 ТОП-0,66		СЭТ-4ТМ.03М.09		HP	реактивная активная	2,7 1,0	5,7 3,3
148	TCH 2	Кл. т. 0,5S Ктт 200/5	-	Кл. т. 0,5S/1,0	-	DL360	реактивная	2,7	5,7
149	TCH 3	ТОП-0,66 Кл. т. 0,5S	_	CЭT-4TM.03M.09	_	HP	активная	1,0	3,3
		Ктт 200/5		Кл. т. 0,58/1,0		DL360	реактивная	2,7	5,7
150	TCH 4	ТОП-0,66 Кл. т. 0,5S	-	CЭT-4TM.03M.09	-	HP DI 260	активная	1,0	3,3
		KTT 200/5	1/01/ 101	Кл. т. 0,5\$/1,0		DL360	реактивная	2,7	5,7
151	яч. 19 РП-8 ввод 1	АЕК-10 Кл. т. 0,5	VSK 10b Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1	3,0
		KTT 1500/5	Ктн 6000:√3/100:√3	161. 1. 0,25, 0,5		B 2500	реактивная	2,6	4,6
152	яч. 34 РП-8 ввод 2	АЕК-10 Кл. т. 0,5	VSK 10b Кл. т. 0,5	CЭT-4TM.03M	_	HP	активная	1,1	3,0
		Ктт 1500/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
153	яч. 117	АЕК-10 Кл. т. 0,5	VSK 10b Кл. т. 0,5	CЭT-4TM.03M	_	HP	активная	1,1	3,0
		Ктт 1500/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
154	яч. 105 ТП-49 ввод 1	АВК-10 Кл. т. 0,5	VSK 10b Кл. т. 0,5	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
134	яч. 10 <i>3</i> 111-49 ввод 1	Ктт 300/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
155	яч. 112	АВК-10 Кл. т. 0,5	UZ10-1T Кл. т. 0,5 Ктн 6000:√3/100:√3 VSK 10b	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1	3,0
		Ктт 300/5	Кл. т. 0,5 Ктн 6000:√3/100:√3				реактивная	2,6	4,6

1	<u>2</u>	3	4	5	6	7	8	9	10
156	яч. 120 РП-9 ввод 1	АЕК-10 Кл. т. 0,5 Ктт 1500/5	UZ10-1T Кл. т. 0,5 Ктн 6000:√3/100:√3 VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
157	яч. 116 РП-8 ввод 3	АЕК-10 Кл. т. 0,5 Ктт 1500/5	UZ10-1Т Кл. т. 0,5 6000:√3/100:√3 VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
158	яч. 147 ТП-49 ввод 2	АВК-10 Кл. т. 0,5S Ктт 300/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,7
159	яч. 131 РП-9 ввод 2	АЕК-10 Кл. т. 0,5 Ктт 1500/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
160	яч. 141 РП-8 ввод 4	АЕК-10 Кл. т. 0,5 Ктт 1500/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,6
161	яч. 136	АВК-10 Кл. т. 0,5 Ктт 300/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная реактивная	1,1 2,6	3,0 4,6
		THUE 10 M2		П-3	T.	1	<u> </u>	1 1	2.0
162	ввод 1	ТПШЛ-10-У3 Кл. т. 0,5 Ктт 3000/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	реактивная	1,1 2,6	3,0 4,6
163	ввод 2	ТПШЛ-10-У3 Кл. т. 0,5 Ктт 3000/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
164	ввод 3	ТПШЛ-10-У3 Кл. т. 0,5 Ктт 3000/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1	3,0

1	<u>одолжение гаолицы 2</u>	3	4	5	6	7	8	9	10
165	ввод 4	ТПШЛ-10-У3 Кл. т. 0,5 Ктт 3000/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
166	ввод 5	ТПШЛ-10-У3 Кл. т. 0,5 Ктт 3000/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1	3,0
167	ввод 6	ТПШЛ-10-У3 Кл. т. 0,5 Ктт 3000/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
168	ввод 7	ТПШЛ-10-У3 Кл. т. 0,5 Ктт 3000/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1	3,0
169	ввод 8	ТПШЛ-10-У3 Кл. т. 0,5 Ктт 3000/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0
170	ТСН 1	ТОП-0,66 Кл. т. 0,5S Ктт 200/5	-	СЭТ-4ТМ.03М Кл. т. 0,5S/1,0	-	HP DL360	активная	1,0	3,3 5,7
171	TCH 2	ТОП-0,66 Кл. т. 0,5S Ктт 200/5	-	СЭТ-4ТМ.03М Кл. т. 0,5S/1,0	-	HP DL360	активная	1,0	3,3 5,7
172	ТСН 3	ТОП-0,66 Кл. т. 0,5S Ктт 200/5	-	СЭТ-4ТМ.03М Кл. т. 0,5S/1,0	-	HP DL360	активная	1,0 2,7	3,3 5,7
173	TCH 4	ТОП-0,66 Кл. т. 0,5S Ктт 200/5	-	СЭТ-4ТМ.03М Кл. т. 0,5S/1,0	-	HP DL360	активная реактивная	1,0 2,7	3,3 5,7
174	яч. 3 ТП-283	АВК-10 Кл. т. 0,5 Ктт 400/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6
175	яч. 7 РП-37 ввод 1	JPZ10-2TA Кл. т. 0,5 Ктт 1500/5	VSK 10b Кл. т. 0,5 Ктн 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	-	HP DL360	активная	1,1 2,6	3,0 4,6

1	2	3	4	5	6	7	8	9	10
176	яч. 35 ТП-283	АВК-10 Кл. т. 0,5	VSK 10b Кл. т. 0,5	CЭT-4TM.03M	-	HP	активная	1,1	3,0
		Ктт 400/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		JPZ10-2TA	VSK 10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
177	яч. 31 РП-37 ввод 2	Кл. т. 0,5S	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		_	
		Ктт 1500/5	Ктн 6000:√3/100:√3	1011 11 0,227 0,2		22000	реактивная	2,6	4,7
	1017	JPZ10-2TA	VSK 10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
178	яч.104 Вв.1	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 400/5	Ктн 6000:√3/100:√3				реактивная	2,6	4,6
1.70	яч. 114 РП-10	JPZ10-2TA	VSK 10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
179	ввод 1	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2.6	4.6
	, ,	KTT 1500/5	Ктн 6000:√3/100:√3	, ,			реактивная	2,6	4,6
100	115	ТОЛ-10	VSK 10b	СЭТ-4ТМ.03М.01		HP	активная	1,1	3,0
180	яч. 115	Кл. т. 0,5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,5Ѕ/1,0	-	DL360		2.6	1.6
		Ктт 600/5 ТОЛ-10					реактивная	2,6	4,6
101	120		VSK 10b	СЭТ-4ТМ.03М.01		HP	активная	1,1	3,0
181	яч. 129	Кл. т. 0,5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,5S/1,0	-	DL360		2.6	1.6
		Ктт 600/5 JPZ10-2TA	VSK 10b				реактивная	2,6	4,6 3,0
182	яч.134 Вв.2	ЈРZ10-21А Кл. т. 0,5	VSK 106 Кл. т. 0,5	СЭТ-4TM.03M		HP	активная	1,1	3,0
102	яч.13 4 Вв.2	Кл. Т. 0,3 Ктт 400/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	noormanaa	2,6	4,6
		JPZ10-2TA	VSK 10b				реактивная активная	1,1	3,0
183	яч. 124 РП-10	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М		HP	активная	1,1	3,0
103	ввод 2	Кл. 1. 0,5 Ктт 1500/5	Кл. 1. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,6	4,6
		K11 1300/3	I	<u> </u> Π-4			рсактивная	2,0	7,0
		ТПШЛ-10-У3	VSK 10b				активная	1,1	3,0
184	ввод 1	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	akinbilah	1,1	5,0
	ввод 1	Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10-У3	3НОЛ.06	COT ATM OCM		TID	активная	1,1	3,0
185	ввод 2	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	-	HP		,	,
	· ·	Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6

1	2	3	4	5	6	7	8	9	10
186	ввод 3	ТПШЛ-10-У3 Кл. т. 0,5	ЗНОЛ.06 Кл. т. 0,5	СЭТ-4ТМ.03М	-	НР	активная	1,1	3,0
		Ктт 3000/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ТПШЛ-10-У3	3НОЛ.06	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
187	ввод 4	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 3000/5	Ктн 6000:√3/100:√3	101. 1. 0,25/ 0,5		DESCO	реактивная	2,6	4,6
		ТПШЛ-10-У3	3НОЛ.06	CЭT-4TM.03M		HP	активная	1,1	3,0
188	ввод 5	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 3000/5	Ктн 6000:√3/100:√3	161. 1. 0,25/ 0,5		D 2500	реактивная	2,6	4,6
	_	ТПШЛ-10-УЗ	3НОЛ.06	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
189	ввод б	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2.5	4.5
		Ктт 3000/5	Ктн 6000:√3/100:√3				реактивная	2,6	4,6
100	TICKL 1	ТОП-0,66		СЭТ-4ТМ.03М.09		HP	активная	1,0	3,3
190	TCH 1	Кл. т. 0,5S	-	Кл. т. 0,5Ѕ/1,0	-	DL360		0.7	5.7
		Ктт 200/5		, ,			реактивная	2,7	5,7
101	TCH 1	TOΠ-0,66		СЭТ-4ТМ.03М.09		HP	активная	1,0	3,3
191	TCH 2	Кл. т. 0,5S Ктт 200/5	-	Кл. т. 0,5S/1,0	-	DL360	noormanaa	2,7	5,7
		K11 200/3	DΠ 01 (προπ	<u> </u>			реактивная	2,1	3,7
		JPZ10-2TA	VSKII-10b	ĺ			активная	1,1	3,0
192	ввод 1	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	активная	1,1	3,0
172	ввод 1	Кл. 1. 0,5 Ктт 400/5	Кл. 1. 0,3 Ктн 10000:√3/100:√3	Кл. т. 0,2S/0,5	_	DL360	реактивная	2,6	4,6
		JPZ10-2TA	VSKII-10b				активная	1,1	3,0
193	ввод 2	Кл. т. 0,5	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	активная	1,1	3,0
175	ввод 2	Ктт 400/5	Ктн 10000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
		ABK-10	VSK 10b	CDT 4T (02) (110	активная	1,1	3,0
194	яч. 6-3 ТП-03	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	_	HP		7	- 7 -
		Ктт 100/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	2,6	4,6
	6 1 TH 0107 TH	ТЛК-10-6У3	VSK 10b	COT ATM OOM		HP	активная	1,1	3,0
195	яч. 6-1 ТП-0107, ТП-	Кл. т. 0,5	Кл. т. 0,5	CЭT-4TM.03M	-	DL360			
	0108	Ктт 50/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL300	реактивная	2,6	4,6

1	<u>одолжение гаолицы 2</u>	3	4	5	6	7	8	9	10
				T-5		l	1		
		ABK-10	VSK I 10b	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
196	яч. 4 ТП-71 ввод 1	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 300/5	Ктн 6000:√3/100:√3	KJ1. 1. 0,25/0,5		DL300	реактивная	2,6	4,6
		ABK-10	VSK I 10b	СЭТ-4TM.03М		HP	активная	1,1	3,0
197	яч. $20\ T\Pi$ - $71\ ввод\ 2$	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360			
		Ктт 300/5	Ктн 6000:√3/100:√3				реактивная	2,6	4,6
100		ABK-10	VSK I 10b	СЭТ-4TM.03М		HP	активная	1,1	3,0
198	яч. 3	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2.6	4.6
		Ктт 300/5	Ктн 6000:√3/100:√3	, ,			реактивная	2,6	4,6
100	22	ABK-10	VSK I 10b	СЭТ-4TM.03М		HP	активная	1,1	3,0
199	яч. 22	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	-	DL360		2.6	4.6
		Ктт 300/5	Ктн 6000:√3/100:√3	 			реактивная	2,6	4,6
		топ сони 10 11		I-24				0.0	1.6
200	17	ТОЛ-СЭЩ-10-11	VSK I 10b	СЭТ-4TM.03М		HP	активная	0,8	1,6
200	яч. 17	Кл. т. 0,2s Ктт 600/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	# 00X##XYPYY04	1.0	2.6
			VSK I 10b				реактивная	1,8 0,8	2,6
201	яч. 22	ТОЛ-СЭЩ-10-11 Кл. т. 0,2s	VSK 1 106 Кл. т. 0,5	СЭТ-4TM.03М		HP	активная	0,8	1,6
201	ЯЧ. <i>ZZ</i>	Ktt 600/5	Кл. т. 0,3 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	_	DL360	noovening	1,8	2,6
		K11 000/3		<u> </u> [-28			реактивная	1,0	2,0
		ТОЛ-СЭЩ-10-11	VSK I 10b	-20 			OKTANDING	0,8	1,6
202	яч.13	Кл. т. 0,2s	Кл. т. 0,5	СЭТ-4TM.03М		HP	активная	0,8	1,0
202	Х1.РК	Кл. 1. 0,28 Ктт 600/5	Кл. 1. 0,3 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	_	DL360	реактивная	1,8	2,6
		ТОЛ-СЭЩ-10-11	VSK I 10b				активная	0,8	1,6
203	яч.24	Кл. т. 0,2s	Кл. т. 0,5	СЭТ-4TM.03М	_	HP	активная	0,0	1,0
203	<i>X</i> 1.∠ 1	Кл. 1. 0,23 Ктт 600/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	_	DL360	реактивная	1,8	2,6
		1011 000/0	ПС 110/6 кВ «Очис	L СТИЫЕ СООРУЖЕНИЯ:	.	1	Решилиния	1,0	2,0
		4MD-12ZEK	ЗНОЛ-СЭЩ-6		,		активная	0,8	1,6
204	ЗРУ-6 кВ,	Кл. т. 0,2	Кл. т. 0,5	CЭT-4TM.03M	_	HP	WKI II DIW/I	0,0	1,0
20.	Секция 1, Ячейка 3	Ктт 1500/5	Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5		DL360	реактивная	1,6	3,2

1	одолжение таолицы <i>2</i>	3	4	5	6	7	8	9	10
205	вывод 0,4 кВ ТСН-1	ТОП-0,66 Кл. т. 0,5S	-	СЭТ-4ТМ.03М.09	-	НР	активная	1,0	3,4
		Ктт 50/5		Кл. т. 0,5Ѕ/1,0		DL360	реактивная	2,1	5,7
	3РУ-6 кВ,	4MD-12ZEK	ЗНОЛ-СЭЩ-6	СЭТ-4ТМ.03М		HP	активная	0,8	1,6
206	Секция 2, Ячейка 19	Кл. т. 0,2 Ктт 1500/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	1,6	3,2
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,4
207	вывод 0,4 кВ ТСН-2	Кл. т. 0,5S Ктт 50/5	-	Кл. т. 0,5S/1,0	-	DL360	реактивная	2,1	5,7
	3РУ-6 кВ,	4MD12	ЗНОЛ-СЭЩ-6	СЭТ-4ТМ.03М		HP	активная	1,1	2,7
208	Секция 2, Ячейка 22	Кл. т. 0,5S Ктт 200/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,3	4,7
• • • •	3РУ-6 кВ,	4MD12	ЗНОЛ-СЭЩ-6	СЭТ-4TM.03М		HP	активная	1,1	2,7
209	Секция 2, Ячейка 20	Кл. т. 0,5S Ктт 200/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,3	4,7
	3РУ-6 кВ,	4MD12	ЗНОЛ-СЭЩ-6	CЭT-4TM.03M		HP	активная	1,1	2,7
210	Секция 1, Ячейка 9	Кл. т. 0,5S Ктт 200/5	Кл. т. 0,5 Ктн 6000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,3	4,7
				«I Водоподъем»					
211	3РУ-10 кВ,	IPZ 10-2	HOM-10	CЭT-4TM.03M		HP	активная	1,1	3,0
211	Секция 1, Ячейка 3	Кл. т. 0,5 Ктт 600/5	Кл. т. 0,5 Ктн 10000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,3	5,1
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,4
212	вывод 0,4 кВ ТСН-1	Кл. т. 0,5S	-	Кл. т. 0,5\$/1,0	-	DL360		0.4	
		KTT 75/5 IPZ 10-2	VSK I 10b				реактивная	2,1	5,7 3,0
213	3РУ-10 кВ,	ГРД 10-2 Кл. т. 0,5	V SK 1 106 Кл. т. 0,5	СЭТ-4TM.03M		HP	активная	1,1	3,0
213	Секция 2, Ячейка 27	Кл. 1. 0,5 Ктт 600/5	Ктн 10000:√3/100:√3	Кл. т. 0,2S/0,5	_	DL360	реактивная	2,3	5,1
		ТОП-0,66		CЭT-4TM-03M.09		HP	активная	1,0	3,4
214	вывод 0,4 кВ ТСН-2	Кл. т. 0,5S	-	Кл. т. 0,5S/1,0	-	DL360			
		KTT 75/5	1101/110	101. 1. 0,00/1,0		22300	реактивная	2,1	5,7
215	3РУ-10 кВ,	ТЛО-10 Кл. т. 0,5	HOM-10 Кл. т. 0,5	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
213	Секция 1, Ячейка 8	Кл. т. 0,5 Ктт 300/5	Кл. т. 0,3 Ктн 10000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,3	5,1

1	2	3	4	5	6	7	8	9	10
	·		ПС 110/10 кВ «	II Водоподъем»					
216	3РУ-10 кВ,	АВ12-МА Кл. т. 0,5	НТМИ-10-66У3 Кл. т. 0,5	СЭТ-4ТМ.03М	_	НР	активная	1,1	3,0
	Секция 1, Ячейка 3	Ктт 600/5	Ктн 10000/100	Кл. т. 0,2S/0,5		DL360	реактивная	2,3	5,1
		ТОП-0,66		CЭT-4TM.03M.09		HP	активная	1,0	3,4
217	вывод 0,4 кВ ТСН-1	Кл. т. 0,5S Ктт 75/5	-	Кл. т. 0,58/1,0	-	DL360	реактивная	2,1	5,7
210	ЗРУ-10 кВ, Секция 2,	AB12-MA	4MR12	CЭT-4TM.03M		HP	активная	1,1	3,0
218	Ячейка 27	Кл. т. 0,5 Ктт 750/5	Кл. т. 0,5 Ктн 10000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,3	5,1
210	0 4 P TOU 0	ТОП-0,66		СЭТ-4ТМ-03М.09		HP	активная	1,0	3,4
219	вывод 0,4 кВ ТСН-2	Кл. т. 0,5S Ктт 75/5	-	Кл. т. 0,5\$/1,0	-	DL360	реактивная	2,1	5,7
220	3РУ-10 кВ,	JZ10Tb	НТМИ-10-66 УЗ	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
220	Секция 1, Ячейка 8	Кл. т. 0,5 Ктт 150/5	Кл. т. 0,5 Ктн 10000/100	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,3	5,1
221	3РУ-10 кВ,	AB12-MA	НТМИ-10-66У3	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
221	Секция 1, Ячейка 10	Кл. т. 0,5 Ктт 300/5	Кл. т. 0,5 Ктн 10000/100	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,3	5,1
222	3РУ-10 кВ,	JZ10Tb	UZ10-1T	СЭТ-4ТМ.03М		HP	активная	1,1	3,0
222	Секция 2, Ячейка 20	Кл. т. 0,5 Ктт 150/5	Кл. т. 0,5 Ктн 10000:√3/100:√3	Кл. т. 0,2S/0,5	-	DL360	реактивная	2,3	5,1

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность для ИК № 1-10, 12-203 в рабочих условиях указана для $\cos \varphi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 до плюс 40 °C.

Погрешность для ИК № 11, 204-222 в рабочих условиях указана для $\cos \varphi = 0.87$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от минус 40 до плюс 50 °C.

4. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Допускается замена УСВ, УСПД на однотипные утвержденного типа. Замена оформляется актом в установленном на ПАО «Нижнекамскнефтехим» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

Наименование характеристики	Значение
Количество измерительных каналов	222
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	98 до 102
- ток, % от I _{ном}	100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
- коэффициент мощности	от 0,5 $_{\rm инд}$. до 0,8 $_{\rm емк}$.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от -40 до +60
- температура окружающей среды в месте расположения	
УСПД и Сервера БД, °С	от -10 до +50
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее	140000
- среднее время восстановления работоспособности, ч	2
УСПД:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	84000
- среднее время восстановления работоспособности, ч	2

Наименование характеристики	Значение
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух направлени-	
ях, сутки, не менее	45
- при отключении питания, лет, не менее	10
УСПД:	
- суточные данные о тридцатиминутных приращениях элек-	
тропотребления по каждому каналу и электропотребление за месяц	
по каждому каналу, суток, не менее	45
- сохранение информации при отключении питания, лет, не	
менее	10
Сервер БД:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - факты связи со счетчиком, приведшие к каким-либо изменениям данных и конфигурации;
 - отсутствие напряжения по каждой фазе с фиксацией времени пропадания и восстановления напряжения;
 - перерывы питания электросчетчика с фиксацией времени пропадания и восстановления;
- журнал сервера БД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в сервер БД;
 - пропадание и восстановление связи со счетчиком;
 - полученные «Журналы событий» ИИК.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - трансформаторов тока;
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера БД;

нии:

- защита на программном уровне информации при хранении, передаче, параметрирова-
 - электросчетчика;
 - сервера БД.

- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2 типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.
1	2	3	4
Трансформатор тока	ТФЗМ-110Б-І	26420-08	2
Трансформатор тока	ТВГ-110	22440-07	12
Трансформатор тока	TB-110/50	3190-72	3
Трансформатор тока	TB-110	29255-07	6
Трансформатор тока	ТФНД-110М-ІІ	2793-71	2
Трансформатор тока	ТПЛ-10	1276-59	4
Трансформатор тока	JPZ10-2T	44317-10	46
Трансформатор тока	ABK-10	44339-10	48
Трансформатор тока	ТОЛ-10	38395-08	14
Трансформатор тока	AB12-MA	37385-08	17
Трансформатор тока	ТОЛ-СЭЩ-10-11	32139-11	18
Трансформатор тока	AEK-10	44312-10	14
Трансформатор тока	4MD12	30823-05	9
Трансформатор тока	ТОП-0,66	15174-06	126
Трансформатор тока	4MD-12ZEK	29196-05	6
Трансформатор тока	IPZ 10-2	44315-10	4
Трансформатор тока	ТЛО-10	25433-11	2
Трансформатор тока	JS10b-2	44340-10	24
Трансформатор тока	ТЛК-10	9143-06	20
Трансформатор тока	ТЛШ-10	6811-78	8
Трансформатор тока	ТПШЛ-10	1423-60	132
Трансформатор тока	JZ10Tb	44314-10	4
Трансформатор напряжения	НКФ-110-57 У1	1188-58	9
Трансформатор напряжения	НАМИ-110-57 УХЛ 1	24218-03	3
Трансформатор напряжения	НАМИ-10-95	20186-05	1

1	2	3	4
Трансформатор напряжения	НТМИ-10-66У3	831-69	2
Трансформатор напряжения	UZ6T-1	44320-10	37
Трансформатор напряжения	UZ10-1T	44322-10	94
Трансформатор напряжения	VSK I 10b	44324-10	43
Трансформатор напряжения	ЗНОЛ-СЭЩ-6	35956-07	18
Трансформатор напряжения	4MR 12	37380-08	3
Трансформатор напряжения	4MR 12	30826-05	6
Трансформатор напряжения	VSK 10b	44321-10	26
Трансформатор напряжения	HOM-10	4947-98	3
Трансформатор напряжения	ЗНИОЛ-6 УЗ	25927-09	6
Трансформатор напряжения	НТМИ-6-66	2611-70	4
Трансформатор напряжения	3НОЛ.06	3344-08	15
Трансформатор напряжения	VSKII-10b	44323-10	4
Счетчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-08	216
Счетчик электрической энергии многофункциональный	СЭТ-4ТМ.03	27524-04	4
Устройство сбора и передачи данных	СИКОН С70	28822-05	1
Устройство синхронизации времени	УСВ-2	41681-09	1
Сервер БД	HP DL360	-	1
Программное обеспечение	ПК «Энергосфера»	-	1
Методика поверки	МП 44695-13 с Изменением № 1	-	1
Формуляр	-	-	1

Поверка

осуществляется по документу МП 44695-13 с Изменением № 1 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Нижнекамскиефтехим» с Изменениями №№ 1, 2. Методика поверки», утвержденному ФГУП «ВНИИМС» 21.11.2016 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»,
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»,
- счетчиков СЭТ-4ТМ.03М в соответствии с методикой поверки ИЛГШ.411152.145РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ, согласованной с ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г,
- счетчиков СЭТ-4ТМ.03 по документу ИЛГШ.411151.124 РЭ1 «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03. Руководство по эксплуатации. Методика поверки», согласованному с ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 г.;

- СИКОН С70 в соответствии с документом ВЛСТ 220.00.000 И1 «Контроллеры сетевые индустриальные СИКОН С70. Методика поверки», утвержденным ВНИИМС в 2005 году;
- УСВ-2 в соответствии с документом «Устройство синхронизации времени УСВ-2. Методика поверки ВЛСТ 237.00.000И1», утвержденным ФГУП «ВНИИФТРИ» 31.08.09 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), регистрационный номер в Федеральном информационном фонде измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C, диапазон измерений относительной влажности от 10 % до 100 %, дискретность 0,1 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Нижнекамскнефтехим» с Изменениями №№ 1, 2

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

ООО «АРСТЭМ-ЭнергоТрейд»

ИНН 6672185635

Юридический адрес: 620026, г. Екатеринбург, ул. Мамина-Сибиряка, 126 Адрес: 620075 г. Екатеринбург, ул. Красноармейская, 26, ул. Белинского, 9

Телефон: +7 (343) 310-70-80, 222-22-78

Заявитель

Общество с ограниченной ответственностью «ПраймЭнерго» (ООО «ПраймЭнерго»)

Адрес: 109507, г. Москва, Самаркандский бульвар, д. 11, корп. 1, пом. 18

ИНН 7721816711

Телефон: +7 (926) 785-47-44 E-mail: <u>shilov.pe@gmail.com</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.