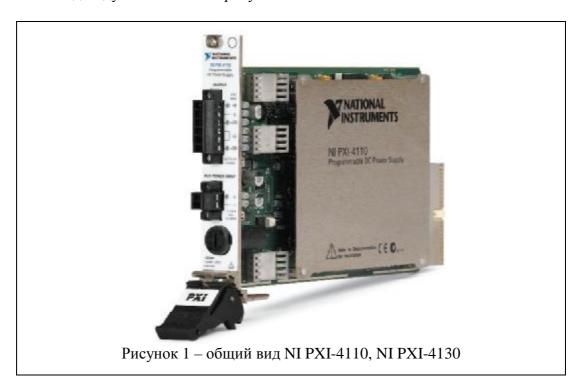
ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Источники питания программируемые модульные NI PXI-4110, NI PXI-4130

Назначение средства измерений

Источники питания программируемые модульные NI PXI-4110, NI PXI-4130 (далее – модули) предназначены для питания на постоянном токе измерительных приборов и другой аппаратуры, требующей высокой точности установки и поддержания напряжения или силы тока при изменениях напряжения сети и сопротивления нагрузки.


Описание средства измерений

Модули представляют собой высокоточные стабилизированные источники напряжения и силы тока, управление которыми производится через интерфейс РХІ. Задаваемое в десятичном цифровом коде значение преобразуется в двоичный цифровой код, который затем преобразуется цифро-аналоговым преобразователем в аналоговое значение выходной величины. Модули имеют выполненные на основе аналого-цифровых преобразователей измерители силы тока и напряжения, позволяющие одновременно контролировать оба параметра.

Для управления модулями нужен контроллер, установленный вместе с модулем в шасси типа РХІ, и программное обеспечение NI-DCPower.

Конструктивно модули выполнены в виде печатной платы, на которой закреплены лицевая панель с разъемами для присоединения кабелей, и разъем интерфейса. Модули устанавливаются в слоты шасси типа РХІ.

Внешний вид модулей показан на рисунке 1.

Питание модулей производится от внутреннего источника (при этом мощность на нагрузке существенно ограничена) и от внешнего сетевого адаптера с выходным напряжением постоянного тока $12~\mathrm{B/5}~\mathrm{A}.$

По условиям эксплуатации модули соответствуют 3 группе ГОСТ 22261-94 с рабочим диапазоном температур от 0 до $55\,^{\rm o}$ C.

Программное обеспечение

Программное обеспечение (драйвер) выполняет функции управления режимами работы, установки диапазонов и задания значений напряжения и силы тока.

Уровень защиты – «низкий» по P50.2.077-2014 (класс риска ("A" по WELMEC 7.2).

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

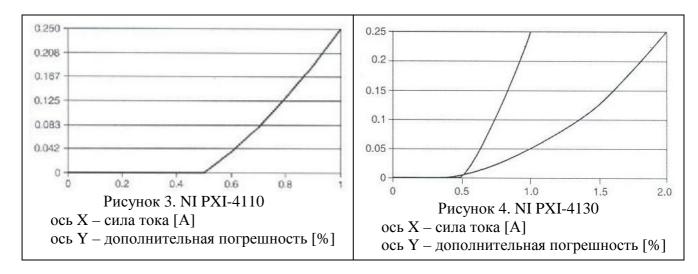
идентификационное наименование	NI-DCPower
идентификационный номер версии	1.5 и выше

Метрологические и технические характеристики

Метрологические и технические характеристики приведены в таблице 2.

от 0 до + 6 В		
от 0 до + 20 В		
от 0 до минус 20 В		
от 0 до + 6 В		
от минус 6 до + 6 В		
от минус 20 до + 20 В		
от 0 до 1 А		
от 0 до 20 мА		
от 0 до 1 А 1		
от 0 до 1 А		
от 0 до 200 мкА		
от 0 до 2 мА		
от 0 до 20 мА		
от 0 до 200 мА		
от 0 до 2 A ²		
сти ΔU установки напряжения U^3 , мВ		
$\pm (5 \cdot 10^{-4} \cdot \text{U} + 4 \text{ MB})$		
$\pm (5.10^{-4} \cdot \text{U} + 10 \text{ MB})$		
$\pm (5.10^{-4} \cdot \text{U} + 4 \text{ MB})$		
$\pm (3.4 \cdot 10^{-4} \cdot \text{U} + 1.5 \text{ MB})$		
$\pm (3.4 \cdot 10^{-4} \cdot \text{U} + 1.8 \text{ MB})$		
ти ΔU измерения напряжения U^3 , мВ		
$\pm (5.10^{-4} \cdot \text{U} + 4 \text{ MB})$		
$\pm (5.10^{-4} \cdot \text{U} + 5 \text{ MB})$		

продолжение таблицы 2


$\pm (5.10^{-4} \cdot \text{U} + 4 \text{ MB})$			
$\pm (3.10^{-4} \cdot \text{U} + 1.5 \text{ MB})$			
сти ΔI установки силы тока I^3 , мк A (м A)			
$\pm (1,5\cdot10^{-3}\cdot I + 4 \text{ mA})^4$			
$\pm (1,5\cdot10^{-3}\cdot I + 60 \text{ MKA})$			
$\pm (1.5 \cdot 10^{-3} \cdot I + 4 \text{ mA})^{4}$			
$\pm (1.5 \cdot 10^{-3} \cdot I + 4 \text{ mA})^4$			
$\pm (3.10^{-4} \cdot I + 0.1 \text{ MKA})$			
$\pm (3.10^{-4} \cdot I + 0.1 \text{ MKA})$			
$\pm (3.10^{-4} \cdot I + 10 \text{ mKA})$			
$\pm (3.10^{-4} \cdot I + 100 \text{ MKA})$			
$\pm (1.2 \cdot 10^{-3} \cdot I + 1 \text{ mA})^4$			
$\Gamma = (1,2 \text{ 10} \cdot 1 + 1 \text{ м/Y})$ сти ΔI измерения силы тока I ³ , мкА (мА)			
$\pm (1,5\cdot 10^{-3}\cdot I + 4 \text{ mA})^4$			
$\pm (1,5\cdot 10^{-3}\cdot I + 35 \text{ MKA})$			
$\pm (1,5\cdot 10^{-3}\cdot I + 4 \text{ mA})^4$			
$\pm (1,5\cdot10^{-3}\cdot I + 4 \text{ mA})^4$			
$\pm (3.10^{-4} \cdot I + 0.02 \text{ MKA})$			
$\pm (3.10^{-4} \cdot I + 0.2 \text{ MKA})$			
$\pm (3.10^{-4} \cdot I + 2 \text{ MKA})$			
$\pm (3.10^{-4} \cdot I + 40 \text{ MKA})$			
$\pm (1,2\cdot10^{-3}\cdot I + 200 \text{ MKA})^4$			
мерения напряжения и силы тока в			
4/°C)			
0,15·ΔU/°C; 0,15·ΔI /°C			
0,15·ΔU /°C; 0,15·ΔI /°C			
0,10·ΔU /°C; 0,15·ΔI /°C			
а один вольт напряжения внешнего			
не нормируется			
$\pm (1.10^{-4} \cdot \text{U} + 1 \text{ MB})$			
дин вольт напряжения внешнего			
дии вольт паприжения внешнего			
He Honminverog			
не нормируется $\pm (1 \cdot 10^{-4} \cdot I + 2 \cdot 10^{-4} \cdot R)^{5}$			
$\pm (1.10 \cdot 1 \pm 7.10 \cdot \mathbf{K})$			

продолжение таблицы 2

продолжение таолицы 2			
отклонение выходного напряжения U при изменении	на один ампер силы тока в нагрузке,		
типовые значения, не более, мВ			
NI PXI-4110, канал 0; NI PXI-4130; канал 0	± 25 мВ		
NI PXI-4110, каналы 1 и 2	$\pm 1.10^{-3} \cdot R$		
NI PXI-4130, канал 1	± 20 мВ		
отклонение силы выходного тока I при изменении на	один вольт напряжения на нагрузке,		
типовые значения, не более, мкА			
NI PXI-4110, NI PXI-4130; канал 0	$\pm 2.10^{-4} \cdot R$		
NI PXI-4110, каналы 1 и 2			
диапазон от 0 до 20 мА	$\pm 3.10^{-5} \cdot R$		
диапазон от 0 до 1 А	$\pm 7.10^{-5}$ ·R		
NI PXI-4130, канал 0	$\pm 2 \cdot 10^{-4} \cdot R$		
NI PXI-4130, канал 1	$\pm 2.10^{-4} \cdot R$		
уровень пульсаций и шума выходного напряжения (с	кз) на частотах от 20 Гц до 20 МГц,		
типовые значения, не более			
NI PXI-4110, NI PXI-4130; канал 0	1,5 мВ		
NI PXI-4110, каналы 1 и 2	1,0 мВ		
NI PXI-4130, канал 1	5,0 мВ		
уровень пульсаций и шума силы выходного тока (скз) на частотах от 20 Гц до 10 кГц,		
типовые значения, не более			
NI PXI-4110, канал 0	8 мкА		
NI PXI-4110, каналы 1 и 2			
диапазон от 0 до 20 мА	3 мкА		
диапазон от 0 до 1 А	8 мкА		
NI PXI-4130	не нормируется		
потребляемая мощность, не более			
от шасси PXI	20 Вт		
от внешнего источника питания	55 BT		
габаритные размеры			
высота	130 мм		
глубина	216 мм		
толщина	20 мм		
масса, не более			
NI PXI-4110	323 г		
NI PXI-4130	312 г		
	•		

ПРИМЕЧАНИЯ:

- $1.\ C$ внешним источником питания $12\ B/5\ A$. При питании от внутреннего источника сила тока в каналах $1\ u\ 2$ ограничена значением $100\ mA$.
- 2. С внешним источником питания 12 B/5 A. Максимальная допускаемая мощность в нагрузке канала 1 составляет 10 Вт в диапазоне температур до 30 °C, в диапазоне температур от 30 до 55 °C она снижается линейно до 5 Вт при температуре 55 °C. При питании от внутреннего источника сила тока в канале 1 ограничена значением 300 мA, а мощность в нагрузке не должна превышать 2 Вт.
- 3. Основная погрешность нормируется в интервале рабочих температур (23 ± 10) °C для модуля NI PXI-4110 и канала 0 модуля NI PXI-4130, (23 ± 5) °C для канала 1 модуля NI PXI-4130.
- 4. Указанные параметры погрешности действительны для значений силы тока не более 0,5 А. Дополнительная относительная погрешность [%] для значений силы тока [A] свыше 0,5 А приведена на рисунках 3 и 4.

5. Здесь и далее R – верхний предел диапазона

Знак утверждения типа

Знак утверждения типа наносится на лицевую панель корпуса в виде наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплектность приведена в таблице 3.

Таблица 3

Наименование и обозначение	
Источник питания программируемый модульный NI PXI-4110, NI PXI-4130	по заказу
Компакт-диск CD с драйвером NI-DCPower и документацией	1
Адаптер сетевой NI APC-4100	по заказу
Кабели и принадлежности	по заказу
Руководство пользователя	1
Методика поверки	1

Поверка

осуществляется в соответствии с документом МП 44246-10 «Источники питания программируемые модульные NI PXI-4110, NI PXI-4130. Методика поверки», утвержденным руководителем ГЦИ СИ «Росиспытания» $20.05.2010~\Gamma$.

Средства поверки указаны в таблице 4.

Таблина 4

наименование и требования к метрологическим	рекомендуемое средство поверки и его			
характеристикам	метрологические характеристики			
вольтметр постоянного напряжения	мультиметр Agilent 3458A			
относительная погрешность измерения	относительная погрешность измерения			
постоянного напряжения от 20 мВ до 20 В	постоянного напряжения от 20 мВ до 20 В			
не более ± 0,015 %	не более ± 0,003 %;			
амперметр постоянного тока	относительная погрешность измерения силы			
относительная погрешность измерения силы	постоянного тока от 50 мкА до 100 мА			
постоянного тока от 50 мкА до 100 мА	не более ± 0,004 %, от 200 мА до 1 А			
не более \pm 0,01 %, от 200 мА до 1 А	не более ± 0,015 %			
не более + 0.015 %				

мера электрического сопротивления	катушка сопротивления Р310 0,01 Ом
электрическое сопротивление 0,01 Ом;	электрическое сопротивление 0,01 Ом;
класс точности 0,01;	класс точности 0,01;
номинальная сила тока не менее 2 А	номинальная сила тока 3,2 А

Сведения о методиках (методах) измерений

Методы измерений изложены в разделах документа «Источники питания программируемые модульные NI PXI-4110, NI PXI-4130. Руководство пользователя».

Нормативные документы, устанавливающие требования к источникам питания программируемым модульным NI PXI-4110, NI PXI-4130

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 8.027-2001. ГСИ. Государственная поверочная схема для средств измерения постоянного электрического напряжения и электродвижущей силы.

ГОСТ 8.022-91. ГСИ. Государственный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне $1 \cdot 10^{-16} \div 30~\mathrm{A}$.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании

Изготовитель

Компания "National Instruments", США;

Адрес: 11500 North Morac Expway, Austin, Texas, 78759-3504, USA;

тел. 1-512-683-0100, факс 1-512-683-9411, e-mail <u>info@ni.com</u>

Заявитель

Представительство компании "National Instruments" в Российской Федерации;

Адрес: 119361, г. Москва, Озерная ул., 42, офис 1201;

тел. +7(495)783-68-51, факс +7(495)783-68-52, http://russia.ni.com/

Испытательный центр

Государственный центр испытаний средств измерений «Росиспытания»;

Адрес: 117421, Москва, ул. Новаторов, д. 40; тел./факс (495)640-09-14;

Аттестат аккредитации ГЦИ СИ «РОСИСПЫТАНИЯ» по проведению испытаний средств измерений в целях утверждения типа № 30123-10 от 12.02.2010 г.

Заместитель Руководителя Федерального				
агентства по техническому				С.С. Голубев
регулированию и метрологии				
	М.п.	«	»	2015 г.