ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

СОГЛАСОВАНО

Руководитель ГЦИ СИ,

еститель генерального

а ФГУП "ВНИИФТРИ"

М.В. Балаханов

ggco. 8 2009 r.

Измерители параметров электромагнитного поля селективные

SRM-3000, SRM-3006

Внесены в Государственный реестр средств измерений

Регистрационный №

43284-09

Взамен №

Выпускаются по технической документации фирмы "Narda Safety Test Solutions GmbH", Германия.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Измерители параметров электромагнитного поля селективные SRM—3000, SRM-3006 (далее — измерители) предназначены для измерения напряженности электрического и магнитного поля электромагнитных полей.

Измерители применяются при решении задач электромагнитной совместимости, электромагнитной безопасности и радиоконтроля.

ОПИСАНИЕ

Принцип действия измерителя состоит в приеме электромагнитных излучений антенной, преобразовании этих излучений в сигналы в коаксиальном тракте, передачи этих сигналов по радиочастотному кабелю на микропроцессорное измерительное устройство, представляющее собой анализатор спектра, которое обеспечивает обработку сигналов и индикацию параметров электромагнитных излучений на встроенном дисплее.

Конструктивно измеритель состоит из комплекта антенн, и измерительного устройства. Антенна подсоединяется к измерительному устройству напрямую или с помощью радиочастотного кабеля, входящего в

Sum

комплект поставки. При этом измерительное устройство автоматически определяет тип антенны и наличие или отсутствие соединительного кабеля.

Рабочие условия эксплуатации – в соответствии с группой 3 ГОСТ 22261-94, с расширенным диапазоном рабочих температур от минус 10 до плюс 50 °C.

Измеритель обеспечивает следующие режимы работы:

- спектральный анализ высокочастотных электромагнитных излучений, измерение текущих значений плотности потока энергии и напряженности электрического и магнитного поля;
- в режиме «Оценка Безопасности» можно подготовить перечень частотных диапазонов, в пределах которых будет измеряться напряженность поля. Результаты для каждого из диапазонов в такой рабочей таблице будут отображаться в единицах напряженности или в процентах от выбранной безопасной нормы.
- в режиме «Временной Анализ» прибор выполняет непрерывные селективные измерения на заданной пользователем постоянной частоте, что позволяет выявить даже кратковременные импульсы, например, от импульсных радаров.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

SRM-3000 с трехкоординатной электрической антенной (Е-поле),

Three axis antenna (E-Field) 3501/03

Диапазон частот,

от 27 МГц до 3 ГГц

Диапазон измерения уровней

напряженности электрического поля

от $0,25\,$ мВ/м до $200\,$ В/м

Пределы допускаемой относительной погрешности измерения напряженности электрического поля приведены в таблице 1.

Таблица 1- Погрешности измерений

Диапазон частот	Погрешность при измерении по одной оси 3-координатной антенны	Погрешность при изотропном измерении
от 27 до 85 МГц	от - 3,3 до + 2,4 дБ	от - 4,5 до + 3,5 дБ
от 85 до 900 МГц	от - 3,3 до + 2,4 дБ	от - 3,4 до + 2,4 дБ
от 901 до 1400 МГц	от - 3,1 до + 2,3 дБ	от - 3,3 до + 2,4 дБ
от 1401 до 1600 МГц	от - 3,1 до + 2,2 дБ	от - 3,7 до + 2,6 дБ

от 1601 до 1800 МГц	от -2,2 до +1,8 дБ	от - 3,0 до + 2,2 дБ
от 1801 до 2200 МГц	от - 2,2 до + 1,8 дБ	от - 3,3 до + 2,4 дБ
от 2201 до 2700 МГц	от - 2,3 до + 1,8 дБ	от - 3,6 до + 2,6 дБ
от 2701 до 3000 МГц	от - 2,4 до + 1,9 дБ	от - 5,3 до + 3,2 дБ

Уровень собственных шумов на частоте 900 МГц для

разрешения по полосе пропускания 1 кГц, дБ, не более

87 мкВ/м

Уровень собственных шумов на частоте 2,1 ГГц для

разрешения по полосе пропускания 1 кГц, дБ, не более

120 мкВ/м

SRM-3000 с трехкоординатной магнитной антенной (H-поле),

Three axis antenna (H-Field) 3581/01

Диапазон частот,

от 100кГц до 250 МГц

Диапазон измерения уровней

напряженности магнитного поля

от 2,5 мкА/м до 560 мА/м

Пределы допускаемой относительной погрешности измерения напряженности магнитного поля приведены в таблице 2.

Таблица 2- Погрешности измерений

Диапазон частот	Погрешность при	Погрешность при	
Andrewson lastor	измерении по одной	изотропном измерении	
	оси 3-координатной антенны		
от 0,1 до 20 МГц	± 3 дБ	± 3,5 дБ	
от 20 до 120 МГц	± 2,1 дБ	± 2,7 дБ	
от 120 до 250 МГц	± 2,3 дБ	± 3,5 дБ	

Уровень собственных шумов для разрешения по полосе

пропускания 1 кГц, дБ, не более

0.8 MKA/M

SRM-3000 с однокоординатной электрической антенной (Е-поле),

Single axis antenna (E-Field) 3531/01

Диапазон частот,

от 27 МГц до 3 ГГц

Диапазон измерения уровней

напряженности электрического поля

от 90 мкВ/м до 80 В/м

Пределы допускаемой относительной погрешности измерения напряженности электрического поля приведены в таблице 3.

Таблица 3 Погрешности измерений

Диапазон частот	Погрешность при Измерении напряженности поля
от 27 до35МГц	не нормируектся
от 36 до 300 МГц	± 2,1 дБ
от 301 до 433 МГц	± 2,3 дБ
от 434 до 1600 МГц	± 2,1 дБ
от 1601 до 3000 МГц	± 1,8 дБ

Уровень собственных шумов на частотах от 100 МГц до 2,1 ГГц для разрешения по полосе пропускания 1 кГц, дБ, не более 30 мкВ/м

SRM-3000 с однокоординатной электрической антенной (Е-поле), Single axis antenna (E-Field) 3531/02B

Диапазон частот,

от 100кГц до 300 МГц

Диапазон измерения уровней напряженности

электрического поля:

- для частот от 100 кГц до 10 МГц

от 125 мкВ/м до 16 В/м

- для частот от 10 до 300 МГц

от 125 мкВ/м до 36 В/м

Пределы допускаемой относительной погрешности напряженности электрического поля приведены в таблице 4.

измерения

Таблица 4 Погрешности измерений

Диапазон частот	Погрешность измерения напряженности поля
от 0,1 до 20 МГц	± 2,7дБ
от 20,1 до 300 МГц	± 2,0 дБ

Уровень собственных шумов на частотах от 100 МГц до 2,1 ГГц для разрешения по полосе пропускания 1 кГц, дБ, не более 30 мкВ/м

SRM-3000 с однокоординатной магнитной антенной (H-поле), Single axis antenna (H-Field) 3551/01

Диапазон частот,

от 100к Γ ц до 300 М Γ ц

Диапазон измерения уровней

напряженности магнитного поля

от 0,4 мкА/м до 71 мА/м

Пределы допускаемой относительной погрешности напряженности магнитного поля приведены в таблице 5.

измерения

Таблица 5 Погрешности измерений

Диапазон частот	Погрешность измерения напряженности поля
от 0,1 до 20 МГц	± 2,7дБ
от 20,1 до 300 МГц	± 2,0 дБ

Уровень собственных шумов для разрешения по полосе пропускания 1 кГц, дБ, не более

0.17 MKA/M

SRM-3006 с трехкоординатной электрической антенной (Е-поле),

Three axis antenna (E-Field) 3501/03

Диапазон частот,

от 27 МГц до 3 ГГц

Диапазон измерения уровней

напряженности электрического поля

от 0,2 мВ/м до 200 В/м

Пределы допускаемой относительной погрешности напряженности электрического поля приведены в таблице 6.

измерения

Таблица 6- Погрешности измерений

Диапазон частот	Погрешность при измерении по одной оси 3-координатной антенны	Погрешность при изотропном измерении
от 27 до 85 МГц	от - 3,3 до + 2,4 дБ	от - 4,7 до + 3,2 дБ
от 85 до 900 МГц	от - 3,4 до + 2,4 дБ	от - 3,6 до + 2,5 дБ
от 901 до 1400 МГц	от - 3,1 до + 2,3 дБ	от - 3,4 до + 2,5 дБ
от 1401 до 1600 МГц	от - 3,1 до + 2,3 дБ	от - 3,8 до + 2,6 дБ
от 1601 до 1800 МГц	от -2,3 до +1,8 дБ	от - 3,0 до + 2,2 дБ
от 1801 до 2200 МГц	от - 2,3 до + 1,8 дБ	от - 3,3 до + 2,4 дБ
от 2201 до 2700 МГц	от - 2,4 до + 1,9 дБ	от - 3,8 до + 2,7 дБ
от 2701 до 3000 МГц	от - 2,4 до + 1,9 дБ	от - 5,3 до + 3,3 дБ

Уровень собственных шумов на частоте 900 МГц для

разрешения по полосе пропускания 1 кГц, дБ, не более

40 MKB/M

Уровень собственных шумов на частоте 2,1 ГГц для

разрешения по полосе пропускания 1 кГц, дБ, не более

70 мкВ/м

измерения

SRM-3006 с трехкоординатной электрической антенной (Е-поле),

Three axis antenna (E-Field) 3502/01

Диапазон частот,

от 420 МГц до 6 ГГц

Диапазон измерения уровней

напряженности электрического поля

от 0,14 мВ/м до 160 В/м

Пределы допускаемой относительной погрешности напряженности электрического поля приведены в таблице 7.

Таблица 7- Погрешности измерений

Диапазон частот	измерении по одной	
	оси 3-координатной антенны	
от 420 до 750 МГц	от - 2,9 до + 2,1 дБ	от - 3,8 до + 2,6 дБ
от 751 до 1600 МГц	от - 2,7 до + 2,0 дБ	от - 2,9 до + 2,2 дБ
от 1601 до 2000 МГц	от - 2,2 до + 1,7 дБ	от - 2,4 до + 1,9 дБ
от 2001 до 4000 МГц	от - 2,2 до + 1,7 дБ	от - 2,6 до + 2,0 дБ
от 4001 до 4500 МГц	от -2,3 до +1,8 дБ	от - 3,0 до + 2,2 дБ
от 4501 до 5000 МГц	от - 2,5 до + 1,9 дБ	от - 3,5 до + 2,5 дБ
от 5001 до 6000 МГц	от - 2,5 до + 1,9 дБ	от - 4,3 до + 2,9 дБ

Уровень собственных шумов на частоте 900 МГц для

разрешения по полосе пропускания 1 кГц, дБ, не более

60 мкВ/м

Уровень собственных шумов на частоте 2,1 ГГц для

разрешения по полосе пропускания 1 кГц, дБ, не более

43 мкВ/м

SRM-3006 с трехкоординатной магнитной антенной (Н-поле),

Three axis antenna (H-Field) 3581/02

Диапазон частот,

от 9 кГц до 250 МГц

Диапазон измерения уровней

напряженности магнитного поля

Пределы допускаемой относительной погрешности измерения напряженности магнитного поля приведены в таблице 8.

Таблица 8- Погрешности измерений

Диапазон частот	Погрешность при	Погрешность при	
Anamason moror	измерении по одной	изотропном измерении	
	оси 3-координатной антенны		
От 9 кГц до 0,3 МГЦ	Не нормируется	Не нормируется	
от 0,3 до 30 МГц	± 2,1 дБ	± 2,4 дБ	
от 30 до 60 МГц	± 2,2 дБ	± 2,5 дБ	
от 60 до 250 МГц	± 2,3 дБ	± 3,2 дБ	

SRM-3006 с однокоординатной электрической антенной (Е-поле),

Single axis antenna (E-Field) 3531/01

Диапазон частот,

от 27 МГц до 3 ГГц

Диапазон измерения уровней

напряженности электрического поля

от 60 мкВ/м до 160 В/м

Пределы допускаемой относительной погрешности измерения напряженности электрического поля приведены в таблице 9.

Таблица 9 Погрешности измерений

Диапазон частот	Погрешность при Измерении напряженности поля
от 27 до 300 МГц	± 2,1 дБ
от 301 до 433 МГц	± 2,4 дБ
от 434 до 1600 МГц	± 2,2 дБ
от 1601 до 3000 МГц	± 1,9 дБ

Уров ень собст венн

ЫΧ

шумов на частотах от 100 МГц до 2,2 ГГц для разрешения по полосе пропускания 1 кГц, дБ, не более

20 мкВ/м

SRM-3006 с однокоординатной электрической антенной (Е-поле),

Single axis antenna (E-Field) 3531/03

Диапазон частот,

от 100кГц до 300 МГц

Диапазон измерения уровней напряженности электрического поля:

- для частот от $100\ \mathrm{к}\Gamma\mathrm{u}$ до $10\ \mathrm{M}\Gamma\mathrm{u}$

от 70 мкВ/м до 16 В/м

- для частот от 10 до 300 МГц

от 70 мкB/м до 36 B/м

Пределы допускаемой относительной погрешности

измерения напряженности электрического поля

± 2,0 дБ

Уровень собственных шумов на частотах от 1 МГц до 300 МГц для

разрешения по полосе пропускания 1 кГц, дБ, не более

20 мкВ/м

SRM-3006 с однокоординатной магнитной антенной (H-поле),

Single axis antenna (H-Field) 3551/01

Диапазон частот,

от 100кГц до 300 МГц

Диапазон измерения уровней

напряженности магнитного поля

от 0,4 мкА/м до 71 мА/м

Пределы допускаемой относительной погрешности

измерения напряженности магнитного поля

 \pm 2,0 дБ

Уровень собственных шумов для разрешения по полосе

пропускания 1 кГц, дБ, не более

0,12 MKA/M

Общие технические характеристики

Для измерительных блоков:	SRM-3000	SRM-3006
Время непрерывной работы на аккумуляторни батареях, не менее, ч:	4	2,5
Электропитание: аккумуляторные батареи размера AA напряжением по 1,2 B, емкостью 2500 мAч, шт:	8	8
Время зарядки батарей, ч:	2	2
Масса, кг:	1,9	2,8
Габаритные размеры, мм:		
- длина	255	297
- ширина	195	213
- высота	60	77

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на панель корпуса измерителя методом тампопечати, а также на руководство по эксплуатации 3001/98.21РЭ типографским способом.

комплектность

п/п	Наименование	Обозначение	SRM- 3000	SRM- 3006
1	Измерительный блок SRM-3000	3001/98.21-011	1	-
2	Измерительный блок SRM-3006	3006/98.21-011	-	1
3	Трехкоординатная электрическая антенна	3501/03	1	1
4	Трехкоординатная электрическая антенна	3502/01	-	1
	Трехкоординатная магнитная антенна*	3581/01, 3581/02	1	1
	Однокоординатная магнитная антенна*	3551/01, 3551/02	1	11
	Однокоординатная электрическая антенна*	3531/01	1	1
	Однокоординатная электрическая антенна*	3531/02B, 3531/04	1	1
	Кабель радиочастотный	3601/01	1	
	Кабель радиочастотный	3602/01		1
	Зарядное устройство, 12 В	2259/92.04	1	1
	Ремень для переноски, 1 м	3001/90.12	1	1
	Тренога 0,16 м	2244/90.32	1	-
	USB кабель для подключения к ЭВМ	2260/90.55	1	1
	Диск с программным обеспечением	3000/93.01, 3006/93.01		1
	Руководство по эксплуатации	3001/90.21PЭ	1	1
	Методика поверки	3001/90.21МП	1	1
	Укладочный ящик	3001/101-103	1	-
	Укладочный ящик	3006/101-108	-	1

^{*} Примечание: Комплектация антенн по заказу.

ПОВЕРКА

Поверка осуществляется в соответствии с документом «Измерители электромагнитного поля селективные SRM-3000, SRM-3006. Методика поверки.» 3006/98.21МП, утвержденным ГЦИ СИ ФГУП «ВНИИФТРИ» 28 декабря 2009 г.

Основное поверочное оборудование.

Рабочий эталон единицы напряженности электрического поля в диапазоне частот от 0,5 до $4\cdot10^6$ Гц РЭНЭП-05Г/4М. Уровень воспроизводимого значения единицы напряженности электрического поля 10 В/м. Основная относительная погрешность \pm 12 %.

Рабочий эталон единицы напряженности электрического поля в диапазоне частот от 3 до 1200 МГц РЭНЭП-3/1200М. Уровень воспроизводимого значения единицы напряженности электрического поля $10~\rm B/m$. Основная относительная погрешность $\pm~12~\rm \%$.

Рабочий эталон единицы напряженности магнитного поля в диапазоне частот от 30 до 1000 МГц РЭНМП-30/1000М. Уровень воспроизводимого значения единицы напряженности магнитного поля 0,125 А/м. Основная относительная погрешность \pm 6 %.

Рабочий эталон единицы напряженности магнитного поля в диапазоне частот от 0,5 до $1\cdot10^7$ Гц РЭНМП-05Г/10М. Уровни воспроизводимых значений напряженности магнитного поля 0,125 А/м и 0,88 А/м. Основная относительная погрешность \pm 5 %.

Рабочий эталон для поверки измерителей плотности потока энергии РЭ ППЭ 0,3-60. Диапазон частот, от 0,3 до 60 ГГц. Уровень воспроизводимого значения плотности потока энергии от 10 мкВт/см 2 3 мВт/см 2 .Основная относительная погрешность воспроизведения ППЭ в режиме непрерывной генерации \pm 12 %.

Межповерочный интервал – один год.

нормативные документы

ГОСТ 22261-94 "Средства измерений электрических и магнитных величин. Общие технические условия".

ГОСТ Р 51070-97 "Измерители напряженности электрического и магнитного полей. Общие технические требования и методы испытаний"

ГОСТ 8.560-94 "Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений напряженности электрического поля в диапазоне частот 0,0003 – 1000 МГц".

ГОСТ Р 8.574-2000 "Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений

плотности потока энергии электромагнитного поля в диапазоне частот от 0,3 до 178,4 $\Gamma\Gamma$ ц".

ЗАКЛЮЧЕНИЕ

Тип измерителей параметров электромагнитного поля селективных SRM-3000, SRM-3006 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственным поверочным схемам ГОСТ 8.560-94 и ГОСТ Р 8.574-2000.

ИЗГОТОВИТЕЛЬ

Narda Safety Test Solutions GmbH, Германия.

Адрес: Sandwiesenstrasse, 7, 72793, Pfulligen, Germany.

E-mail: support@narda-sts.de

WWW.narda-sts.de

Заявитель: ООО «Юнисерт»

Адрес: 127473, Москва, 1-й Щемиловский пер., 16, стр. 2

Генеральный директор ООО «Юнисерт»

Харченко