Приложение к свидетельству № ______ об утверждении типа средств измерений серийного производства

всего листов 5

Системы автоматизированные контроля выхлопных газов «АСКВГ»

Внесены в государственный реестр средств измерений Регистрационный № 42543-09 Взамен №

Выпускаются по техническим условиям ФЕАС.421400.001 ТУ.

назначение и область применения

Системы автоматизированные контроля выхлопных газов «АСКВГ» (далее – системы) предназначены для измерения и контроля состава выхлопных газов и расчёта мощности и валовых выбросов вредных (загрязняющих) веществ (В(3)В) газотурбинных установок (ГТУ).

Основная область применения систем – экологический мониторинг и диагностика технического состояния ГТУ.

Блок пробоотбора (БПО) из состава системы предназначен для использования во взрывоопасной зоне, остальное оборудование системы предназначено для использования вне взрывоопасных зон промышленных объектов.

ОПИСАНИЕ

Системы автоматизированные контроля выхлопных газов «АСКВГ» относятся к проектнокомпонуемым изделиям. Конкретное исполнение системы (состав и конструктивное исполнение, количество измерительных каналов) определяется рабочим проектом на систему.

Система имеет архитектуру до двух уровней иерархии:

а) на нижнем уровне - модули (по числу ГТУ) подготовки и проведения измерений (МППИ), предназначенные для отбора пробы в выхлопной шахте ГТУ, проведения измерений состава выхлопных газов и передачи данных контроля и измерений на верхний уровень; МППИ содержит БПО и блок газоаналитический (БГА); БПО предназначен для непрерывного отбора, предварительной фильтрации, поддержания температуры пробы газа в объёме пробоотборника около плюс 80°C для исключения образования конденсата и для доставки пробы в БГА и содержит пробоотборник, устанавливаемый на стенке выхлопной шахты ГТУ и линию доставки пробы, состоящую из газовой трубки, саморегулирующегося нагревательного кабеля, термоизоляции и внешнего защитного кожуха; БГА предназначен для проведения измерений состава выхлопных газов и передачи данных контроля и измерений на верхний уровень и представляет из себя всепогодный шкаф напольного исполнения с установленным в нём газоаналитическим и вспомогательным оборудованием; газоаналитическое оборудование содержит оборудование подготовки и подачи пробы в газоанализаторы (компрессор, охладитель, фильтр, ротаметры, вентили точной регулировки расхода), один или два газоанализатора модели 4000 (Госреестр № 16161-07), Teledyne моделей 7500, 7600 (Госреестр № 37560-08), серии АО2000 (Госреестр № 27467-09), линию удаления пробы и конденсата, аналогичную по конструкции линии доставки пробы; вспомогательное оборудование содержит оборудование поддержки требуемых климатических условий эксплуатации газоаналитического оборудования (кондиционер, обогреватель воздуха, теплообменник), оборудование для сбора и передачи данных контроля и измерений на верхний уровень (контроллер и

всего листов 5

конвертор связи), оборудование обеспечения БГА бесперебойным питанием (источник бесперебойного питания (ИБП), блок питания 220/24DC), оборудование для калибровки газоанализаторов (баллоны с калибровочными смесями, 3/2 – ходовые клапаны).

б) на верхнем уровне - модуль обработки данных (МОД), предназначенный для получения данных контроля и измерений от МППИ, получения режимных параметров ГТУ от САУ ГТУ, обработки поступающей информации, вычисления мощности и объёмов выбросов В(3)В ГТУ, сохранения результатов измерений и расчётов в архивной базе данных, визуализации результатов измерений и расчётов, обмена данными с внешними системами; МОД содержит сервер, сетевое оборудование, ИБП, автоматизированное рабочее место эколога (АРМ-Э).

Для реализации необходимых функций на нижнем и верхнем уровнях Системы применяется специализированное программное обеспечение «Мониторинг ВГ».

Связь между уровнями осуществляется по цифровым каналам связи с использованием стандартных интерфейсов и протоколов обмена.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Система обеспечивает измерение физических величин (концентрации газа) а также регистрацию и обработку результатов измерений.

Пределы допускаемых погрешностей измерительных каналов объёмной доли оксида углерода (CO), оксида азота (NO), диоксида углерода (CO₂), кислорода (O₂), метана (CH₄), диоксида серы (SO₂), диоксида азота (NO₂) в диапазонах измерений определяются соответствующими пределами допускаемых погрешностей измерительных каналов газоанализаторов, применяемых в составе системы.

Пределы допускаемой основной приведенной погрешности объёмной доли измеряемых компонентов не должны превышать приведённых в таблице 1.

Таблица 1

Определяемый компонент	Диапазон измерений объемной доли определяемого компонента	Пределы допускаемой основной приведенной погрешности, %
Оксид углерода (СО)	(0-50) млн- ¹	± 15
	(0-100) млн- ¹	± 6
	(0-200) млн- ¹	± 10
	(0-300) млн- ¹	± 10
	(0-500) млн- ¹	± 5
	(0-1000) млн- ¹	± 5
Оксид азота (NO)	(0-100) млн- ¹	± 10
	(0-200) млн- ¹	± 10
	(0-500) млн- ¹	± 8
	(0-1000) млн- ¹	± 8
Диоксид углерода (СО2)	(0-2) %	± 4
	(0-2,5) %	± 4
	(0-5) %	± 4
	(0-10) %	± 4
Кислород (О2)	(0-25) %	± 2
	(0-30) %	± 2

всего листов 5

Определяемый компонент	Диапазон измерений объемной доли определяемого компонента	Пределы допускаемой основной приведенной погрешности, %	
Метан (СН4)	(0-100) млн- ¹	± 10	
	(0-500) млн- ¹	± 10	
	(0-1000) млн- ¹	± 6	
	(0-2000) млн-1	± 5	
	(0-5000) млн-1	± 5	
Диоксид серы (SO ₂)	(0-100) млн- ¹	± 8	
	(0-500) млн- ¹	± 8	
Диоксид азота (NO ₂)	(0-250) млн- ¹	± 6	

Пределы допускаемой дополнительной приведённой погрешности от изменения температуры внутреннего объёма шкафа МППИ на каждые 10^{0} С равны 0,5 в долях от пределов допускаемой основной приведенной погрешности.

Пределы допускаемой дополнительной относительной погрешности от изменения температуры внутреннего объёма шкафа МППИ на каждые 10^{0} С при измерении объёмной доли СО с помощью газоанализаторов ABB в диапазоне 0-1000 млн- 1 и CH₄ в диапазоне 0-1000 млн- 1 составляют ± 1 %, O₂ в диапазоне 0-25 % – 0,5 %.

Рабочие условия применения компонентов систем:

• температура окружающего воздуха:

модуль МППИ — минус 50 до плюс 50 °C; модуль МОД — от плюс 15 до плюс 25 °C.

• относительная влажность:

модуль МППИ 95 % при температуре плюс 35 °C.

Модуль МОД от 30 до 80 % во всем диапазоне рабочих температур;

• напряжение питания $220^{+10\%}_{-15\%}$ В частотой (50 ± 1) Γ ц, либо от источников бесперебойного питания (ИБП), обеспечивающих напряжение в указанных пределах.

Мощность, потребляемая МППИ (кроме линий доставки и удаления пробы и конденсата) при номинальном напряжении питания, не более 5 кВ·А.

Мощность, потребляемая линиями доставки пробы и удаления пробы и конденсата, при номинальном напряжении питания, не более 70Вт/м.

Мощность, потребляемая МОД при номинальном напряжении питания, не более 1 кВ·А.

Длительность работы системы только от ИБП составляет не менее 30 мин.

Габаритные размеры компонентов системы не более:

- шкаф МППИ 800x2200x800 мм
- МОД (APM-Э) 600х600х600 мм;
- МОД (шкаф серверный) 650x2000x800 мм.

Масса компонентов системы не более:

- МППИ 320кг;
- МОД (APM-Э) 10 кг;
- МОД (шкаф серверный) 200 кг.

МППИ устойчив к воздействию синусоидальной вибрации в диапазоне частот от 5 до 60 Γ ц с амплитудой смещения 0,075 мм и 9,8 м/с² в диапазоне частот от 60 до 80 Γ ц, группа исполнения N3 по Γ OCT P 52931-2008.

всего листов 5

По степени защиты от проникновения воды и пыли, твердых частиц МППИ соответствует группе не ниже IP54 по ГОСТ 14254-96, компоненты верхнего уровня соответствуют группе не ниже IP20 по ГОСТ 14254-96.

Срок службы системы составляет 8 лет.

Время восстановления работоспособности системы не более двух часов при наличии ЗИП.

Гамма процентный срок сохраняемости компонентов системы не менее пяти лет для отапливаемых хранилищ при $\gamma = 90$ %.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится типографским способом на титульные листы эксплуатационной документации.

комплектность

Состав системы определяется заказной спецификацией. В комплект системы должны входить компоновочные изделия, включающие программное обеспечение, и документация в соответствии с таблипей 2.

Таблица 2

Наименование	Обозначение	Примечание
Модуль подготовки и проведения измерений (МППИ)	ФЕАС.421400.001.010-XX	*
Модуль обработки данных (МОД)	ФЕАС.421400.001.020-ХХ	*
Доку	ментация	
Руководство по эксплуатации	ФЕАС.421400.001-ХХРЭ	1 экз
Руководство оператора	ФЕАС.421400.001-ХХРО	1 экз
Методика поверки	ФЕАС.421400.001-ХХРЭ1	1 экз
Формуляр	ФЕАС.421400.001-ХХФО	1 экз

Примечание: * - Количество определяется заказной спецификацией на систему.

ПОВЕРКА

Поверка газоанализаторов из состава систем автоматизированных контроля выхлопных газов «АСКВГ» – в соответствии с их технической документацией.

Поверка систем проводится в соответствии с документом «Система автоматизированная контроля выхлопных газов «АСКВГ». Методика поверки» ФЕАС.424100.001 РЭ1, согласованным с ВНИИМС в ноябре 2009 г.

Межповерочный интервал газоанализаторов из состава систем автоматизированных контроля выхлопных газов «АСКВГ» - в соответствии с их технической документацией.

Межповерочный интервал - 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ Р 8.596-2002 Системы информационно-измерительные. Метрологическое обеспечение. Общие положения.

ГОСТ Р 52931 - 2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

Приложение к свидетельству № _____ об утверждении типа средств измерений серийного производства

лист № 5

всего листов 5

ФЕАС.421400.001ТУ «Системы автоматизированная контроля выхлопных газов «АСКВГ» Технические условия.

ЗАКЛЮЧЕНИЕ

Тип систем автоматизированных контроля выхлопных газов «АСКВГ» утверждён с техническими и метрологическими характеристиками, приведёнными в настоящем описании типа, и метрологически обеспечен при выпуске из производства и в эксплуатации согласно действующим государственным поверочным схемам.

Сертификат соответствия № РОСС RU.ГБ05.В02905, выдан органом по сертификации РОСС RU.0001.11ГБ05 НАНИО «Центр по сертификации взрывозащищенного и рудничного электрооборудования».

Изготовитель: ООО "Научно-производственное объединение "Факел-М"

117246, г. Москва, Научный проезд, д. 12, к. 37 тел/факс 8-(499)-120-33-25, e-mail: fakelm@fakelm.ru

Технический директор ООО «НПО «Факел-М»

Clys

С.Е. Кукушкин