ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Термометры биметаллические ТБ

Назначение средства измерений

Термометры биметаллические ТБ (далее термометры) предназначены для измерений температуры газовых и жидких сред в трубопроводах и различных емкостях.

Описание средства измерений

Принцип действия термометра основан на упругой деформации, возникающей под действием температуры двух прочно соединенных металлических пластин, имеющих различные коэффициенты линейного расширения. При изменении температуры биметаллическая спираль изгибается в сторону материала с меньшим коэффициентом линейного расширения, изгиб с помощью кинематического узла преобразуется во вращательное движение стрелки, показывающей измеряемое значение температуры по шкале термометра.

Конструктивно термометры состоят из круглого корпуса и биметаллического термочувствительного элемента в защитной трубке. В корпусе находится циферблат и кинематический механизм со стрелкой.

Термометры ТБ имеют модификации, отличающиеся друг от друга диапазонами измерений температуры, классом точности, конструктивным оформлением (диаметр корпуса, длина штока). Термометры ТБ изготавливаются в 3-х конструктивных исполнениях (осевое, радиальное и поворотно-откидное).

Общий вид термометра представлен на рисунке 1.

Рисунок 1 – Вид Термометра биметаллического ТБ

Метрологические и технические характеристики

Метрологические и технические характеристики приведены в таблицах 1. Диапазоны показаний и диапазоны измерений указаны в таблице 1

Таблина 1

Диаг	пазон показаний °С	Диапазон измерений °C	Диапазон показаний °С	Диапазон измерений °C
M	инус 50 - 50	минус 40 - 40	0 - 120	20 - 100
M	инус 50 - 100	минус 40 - 90	0 - 150	20 - 130
M	инус 40 - 40	минус 30 - 30	0 - 160	20 - 140

Диапазон показаний °C	Диапазон измерений °C	Диапазон показаний °С	Диапазон измерений °C
минус 40 - 60	минус 30 - 50	0 - 200	20 - 180
минус 30 - 50	минус 20 - 40	0 - 250	30 - 220
минус 20 - 40	минус 10 - 30	0 - 300	40 - 260
минус 20 - 60	минус 10 - 50	0 -350	50 - 300
0 - 60	10 - 50	0 - 400	50 - 350
0 - 80	10 - 70	0 - 500	50 - 450
0 - 100	10 - 90	0 - 600	100 - 500

2. Класс точности и пределы допускаемой приведенной погрешности, указаны в таблице 2 Таблица 2

Исполнение	Класс точности	Пределы допускаемой приведенной
		погрешности, %
Т (осевое)	1,0; 1,5; 2,5; 4	$\pm 1,0;\pm 1,5;\pm 2,5;\pm 4$
Р (радиальное)	1,0; 1,5; 2,5	$\pm 1,0;\pm 1,5;\pm 2,5$
ПО (поворотно-откидное)	1,0; 1,5	$\pm 1,0;\pm 1,5$

3. Габаритные размеры указаны в таблице 3

Таблица 3

Исполнение	Диаметр корпуса, мм	Длина штока, мм	Диаметр штока, мм
Т (осевое)	30; 40; 50; 63	30;50; 63; 80; 100; 150	4; 6; 8; 9;
-	80; 100; 150	200; 250; 300; 350 - 1000	10; 12
Р (радиальное)	63; 80; 100; 150	63; 80; 100; 150; 200; 250	
ПО (поворотно-откидное)	80; 100; 125	300; 350; 400; 450 - 1000	
	150		

- 4. Масса, кг от 0,15 до 1,5 (в зависимости от исполнения)
- 5. Вариация показаний не превышает абсолютного значения предела допускаемой приведенной погрешности показаний.

6. Показатель тепловой инерции в водной среде, с 40 7. Средняя наработка на отказ, ч 60000

8. Средний срок службы, лет

9. Материал изготовления представлен в таблице 4

Таблица 4

Исполнение	Материал корпуса	Материал защитной гильзы	Материал штока
Т (осевое)	нержавеющая сталь,	латунь,	нержавеющая
Р (радиальное) оцинкованная сталь		нержавеющая сталь,	сталь, медный
		сталь	сплав
ПО (поворотно-откидное)	нержавеющая сталь	нержавеющая сталь	нержавеющая сталь

10. Условия эксплуатации:

- диапазон температур окружающего воздуха, °C минус 40 60
- диапазон относительной влажности, % от 30 до 95
- диапазон атмосферного давления, кПа от 84 до 106,7

Знак утверждения типа

наносят на титульный лист паспорта типографским способом и на циферблат термометра методом печати.

Комплектность средства измерений

В комплект поставки входят:

- термометр биметаллический ТБ 1 шт.; - паспорт 1 экз.; - методика поверки МП-203-0086-2009 1 экз.

Поверка

осуществляется по методике МП 203-0086-2009 «Термометры биметаллические ТБ. Методика поверки», утвержденной ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» в октябре 2009 г.

Основное оборудование для поверки: эталонный платиновый термометр сопротивления 3-го разряда ЭТС 100; компаратор напряжений Р3017 (Госреестр №9706-84), термостат типа 814, диапазон температур от минус 80 до 40 °C, нестабильность поддержания температуры \pm 0,02 °C, термостат нулевой, термостат ТР1М-300, диапазон температур от 40 до 200 °C, нестабильность поддержания температуры \pm 0,05 °C.

Сведения о методиках (методах) измерений

Отсутствуют.

Нормативные и технические документы, устанавливающие требования к термометрам биметаллическим TБ

ГОСТ 8.558-2009 «ГСИ. Государственная поверочная схема для средств измерений температуры».

ТУ 4211-001-76586391-2009 «Термометры биметаллические ТБ. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений:

 при выполнении работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законом Российской Федерации о техническом регулировании.

Изготовитель

ООО «БД»

Адрес: 111020, Москва, ул. Боровая д.7, стр.10, Тел/факс.(499) 400-04-10, e-mail: <u>info@bdrosma.ru</u>

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19 тел./факс 251-76-01/113-01-14, e-mail: <u>info@vniim.ru</u>

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п.	"	"	2014 г