




Датчики газов электрохимические Dräger Polytron 2/2 XP TOX/L/3000/7000 Внесены в Государственный реестр средств измерений Регистрационный № 39018-08 Взамен №№ 22784-02, 25947-03, 31132-06

Выпускаются по технической документации фирмы « Dräger Safety AG & Co.KGaA», Германия.

### НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Датчики газов электрохимические Dräger Polytron 2/2 XP TOX/L/3000/7000 (далее – датчики) предназначены для автоматического непрерывного измерения объемной доли кислорода и вредных газов и паров в воздушных средах.

Датчики применяются в качестве самостоятельных измерительных приборов, в составе систем измерительных Regad-Polytron, выпускаемых фирмой Dräger Safety AG & Co.KGaA, Германия, а также в составе других измерительных систем, допущенных к применению на территории РФ.

Область применения – контроль воздуха рабочей зоны в различных отраслях промышленности, в том числе и на взрывоопасных объектах (кроме датчиков Polytron 7000 в комплекте с насосным и релейным модулями), и при аварийных ситуациях.

## ОПИСАНИЕ

Датчики являются стационарными приборами непрерывного действия, выполнены в прочном, коррозионно устойчивом, искробезопасном или взрывонепроницаемом корпусе.

Принцип действия датчиков - электрохимический, основан на применении химически активных измерительных элементов (электрохимических сенсоров), на электродах которых протекает окислительно-восстановительная реакция определяемого вещества. Значение возникающего при этом потенциала зависит от концентрации вешества.

Датчики выпускаются в 5-и модификациях:

- 1) Dräger Polytron 2,
- 2) Dräger Polytron 2 XP TOX,
- 3) Dräger Polytron 7000,
- 4) Dräger Polytron L (Dräger Polytron L C12; Polytron L HF/HC1),
- 5) Dräger Polytron 3000.

Модификации датчиков, поз. 1)-3) применяются со сменными сенсорами со встроенной памятью данных для контроля содержания газов, приведенных в таблице 1. После установки сенсора электронная часть датчика (измерительной головки) автоматически настраивается на рабочие параметры сенсора.

Модификация датчиков, поз. 4) применяются с сенсорами на хлор или хлористый водород, соответственно.

Модификация датчиков, поз. 5) применяются с определенными сенсорами для контроля содержания газов, приведенных в таблице 2.

Датчики имеют дисплей для непрерывного отображения концентрации компонента непосредственно на месте измерения, выдачи предупреждающих сообщений (в т.ч. о необходимости технического обслуживания или о неисправности прибора) и встроенную клавиатуру (кроме датчиков Dräger Polytron L).

Датчики Dräger Polytron 2, Polytron 7000 могут выпускаться без дисплея и встроенной клавиатуры для установки в труднодоступных местах, управление которых проводится при помощи ручного портативного модуля ИК или HART или дистанционный пульт управления Dräger Polytron 2 XP Remote Control, допущенных к применению.

Настройка и корректировка показаний может проводиться на месте установки датчиков при помощи:

соответствующих кнопок управления или переключателей и потенциометров (Polytron 3000), расположенных под крышкой сервисного порта на передней панели датчика,

блока ИК дистанционного управления или ручного управляющего модуля HART, допущенных к применению.

Выходные сигналы: аналоговый (4-20) мА, цифровой HART или RS 485.

Способ отбора проб – диффузионный. Для модификации Polytron 7000 предусмотрен насосный модуль для непрерывной подачи анализируемого воздуха из труднодоступных мест взрывобезопасных зон.

### ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные метрологические характеристики датчиков приведены в таблицах 1 и 2.

Таблица 1.

Метрологические характеристики датчиков Dräger Polytron 2/2 XP TOX/L/3000/7000 модификаций Dräger Polytron 2, Dräger Polytron 2 XP TOX, Dräger Polytron 7000,

Dräger Polytron L Диапазон Пределы допускаемой Предел допус-Назначение Опреде-Обознакаемого вречение измерений основной погрешности, ляемый мени установ-% компонент сенсора объемной ления показадоли, привеотносиний  $T_{0.9 I\hspace{-0.1cm}I}$  , с млн<sup>-1</sup> (ppm) тельная (δ) денная (у) 2 3 4 5 6 1 Контроль ПДК, CO 0 – 15 ± 20 40 Оксид уг-15 - 50при аварийных лерода  $\pm 20$ 0 - 300ситуациях ± 10 0 - 1000± 10 0 – 200 60 CO LS При аварийных ± 10 0 - 1000ситуациях ± 10 0 - 5000± 10 60 Контроль ПДК, NO LC 0 - 4± 20 Оксид азо-4 - 30при аварийных та ± 20 0 - 50ситуациях ± 15 0 - 200± 15 50 NO<sub>2</sub> 0 - 1± 20 Диоксид 1 - 5± 20 - « азота 0 - 10± 20 0 - 100± 15 45 SO<sub>2</sub> 0 - 3Диоксид ± 20 3 - 5серы  $\pm 20$ - « -0 - 10± 20 0 - 100± 15 30 0 - 50При аварийных Аммиак NH<sub>3</sub> HC ± 20 50 - 300 ситуациях ± 20 0 - 1000± 15 NH<sub>3</sub> LC\* 0 - 3040 Контроль ПДК, ± 20 30 - 200при аварийных ± 20 ситуациях

| 1         | 2.                                    | 3          | 4    | 5    | 6  | 7              |
|-----------|---------------------------------------|------------|------|------|----|----------------|
| Хлор      | Cl <sub>2</sub>                       | 0 – 0,3    | ± 20 | -    | 30 |                |
|           |                                       | 0,3 – 1    | -    | ± 20 |    | - « -          |
|           |                                       | 0 – 10     | ± 20 | -    |    |                |
|           |                                       | 0 - 50     | ± 15 | -    |    |                |
| Сероводо- | H₂S LC                                | 0 – 7      | ± 20 | -    | 40 |                |
| род       |                                       | 7 – 10     | -    | ± 20 |    | - « -          |
|           |                                       | 0 – 50     | ± 15 | -    |    |                |
|           |                                       | 0 – 100    | ± 15 | -    |    |                |
|           | H₂S HC                                | 0 – 100    | ± 15 | -    | 60 | При аварийных  |
|           |                                       | 0 – 500    | ± 10 | -    |    | ситуациях      |
|           |                                       | 0 – 1000   | ± 10 | -    |    |                |
| Хлористый | HCI                                   | 0 – 3      | ± 20 | -    | 30 | Контроль ПДК,  |
| водород   |                                       | 3 – 20     | -    | ± 20 |    | при аварийных  |
|           |                                       | 0 – 30     | ± 20 | -    |    | ситуациях      |
|           |                                       | 0 - 100    | ± 15 | -    |    |                |
| Фосфин,   | AsH₃                                  | 0 - 0,05   | ± 20 | -    | 40 | Контроль ПДК   |
| арсин     |                                       | 0,05 - 0,3 | -    | ± 20 |    |                |
|           | PH₃                                   | 0 – 0,1    | ± 20 | -    |    | - « -          |
|           |                                       | 0,1 - 0,3  |      | ± 20 |    |                |
|           | PH <sub>3</sub> / AsH <sub>3</sub> *; | 0 - 0,3    | ± 20 | -    |    | При аварийных  |
|           | Hydride*                              | 0,3 - 1    | _    | ± 20 |    | ситуациях      |
|           | (PH <sub>3</sub> , AsH <sub>3</sub> ) | 1 - 20     |      | -    |    |                |
| Кислород  | O <sub>2</sub>                        | 0 – 5 %    | ± 5  | -    | 40 | Контроль ки-   |
|           |                                       | об.доля    |      |      |    | слорода в воз- |
|           |                                       | 5 – 25 %   | -    | ± 5  |    | духе рабочей   |
|           |                                       | об.доля    |      |      |    | зоны           |
|           |                                       | 0 - 100    | ± 1  | -    |    |                |
| Цианистый | HCN*                                  | 0 – 10     | ± 15 | -    | 40 | При аварийных  |
| водород   |                                       | 0 – 50     |      |      |    | ситуациях      |
|           |                                       | (0 - 10    | ± 20 | -    |    |                |
|           |                                       | 10 – 50)   | -    | -    |    |                |
|           |                                       |            |      |      |    |                |
| Фосген    | COCI <sub>2</sub>                     | 0 – 0,1    | ± 20 | -    | 30 | Контроль ПДК,  |
|           |                                       | 0,1 - 0,5  | -    | ± 20 |    | при аварийных  |
|           |                                       | 0 – 1      | ± 20 | -    |    | ситуациях      |
|           |                                       |            |      |      |    |                |

| 1         | 2              | 3                    | 4    | 5    | 6  | 7              |
|-----------|----------------|----------------------|------|------|----|----------------|
| Водород   | H <sub>2</sub> | 0 – 500              | ± 10 | -    | 40 | ПДК отсутству- |
|           |                | 0 – 1000             | ± 10 | -    |    | ет             |
|           |                | 0 – 3000             | ± 10 | -    |    |                |
| Фтористый | AC             | 0 – 0,5              | ± 20 | -    | 60 | Контроль ПДК,  |
| водород   | (ACL)*         | 0,5 - 3              | -    | ± 20 |    | при аварийных  |
|           |                | 0 – 10               | ± 20 | -    |    | ситуациях      |
|           |                | 0 - 30               | ± 15 | -    |    |                |
| Хлористый | _ " _          | 0 – 0,5              | ± 20 | -    | 60 |                |
| водород   |                | 0,5 – 3              | -    | ± 20 |    | - « -          |
|           |                | 0 – 10               | ± 20 | -    |    |                |
|           |                | 0 – 30               | ± 15 | -    |    |                |
| Уксусная  | - " -          | 0 – 10               | ± 20 | -    | _  | При аварийных  |
| кислота   |                | 0 - 30               | ± 20 | -    |    | ситуациях      |
| Этилен    | Organic        | 0 – 20               | ± 15 | -    | 20 | Контроль ПДК   |
|           | Vapors*        | 0 – 50               | ± 15 | -    |    |                |
|           | (OV)           | 50 - 100             | -    | ± 15 |    |                |
| Винилхло- |                | 0 – 20               | ± 15 | -    | 20 | При аварийных  |
| рид       | - " -          | 0 – 50               | ± 15 | -    |    | ситуациях      |
|           |                | 0 – 100              | ± 15 | -    |    |                |
| Метанол   |                | 0 – 20               | ± 15 |      | 90 |                |
|           | - " -          | 0 – 50               | ± 15 | -    |    | - « -          |
|           |                | 0 – 200              | ± 15 |      |    |                |
|           |                |                      |      |      |    |                |
| Этанол    |                | 0 – 100              | ± 15 | -    | 90 | Контроль       |
|           | - " -          | 0 – 200              | ± 15 | -    |    | 0,5 ПДК        |
|           |                | 0 – 300              | ± 15 | -    |    |                |
|           |                |                      |      |      |    |                |
| A         |                | 0 50                 | . 45 |      |    | <b>D</b>       |
| Ацеталь-  | и              | 0 – 50               | ± 15 | -    | 20 | При аварийных  |
| дегид     | - " -          | 0 – 100              | . 20 |      |    | ситуациях      |
|           |                | (0 - 50              | ± 20 | -    |    |                |
|           |                | 50 –100)             | -    | -    |    |                |
|           |                | 0 – 200              | . 20 |      |    |                |
|           |                | (0 - 50<br>50 - 300) | ± 20 | -    |    |                |
|           |                | 50 –200)             | -    | -    |    |                |
|           |                |                      |      |      |    |                |

| 1                  | 2                                | 3        | 4    | 5    | 6   | 7              |
|--------------------|----------------------------------|----------|------|------|-----|----------------|
| Формаль-           | Organic                          | 0 – 20   | ± 20 | _    | 20  | - « -          |
| дегид              | Vapors*                          | 0 – 50   | -    |      |     |                |
|                    | (OV)                             | (0 – 20  | ± 25 | -    |     |                |
|                    |                                  | 20 –50)  | -    | -    |     |                |
|                    |                                  | 0 - 100  |      |      |     |                |
|                    |                                  | (0 – 20  | ± 25 | -    |     |                |
|                    |                                  | 20 –100) | -    | -    |     |                |
| Maanna             |                                  | 0 100    | . 45 |      | 00  |                |
| Изопро-            | и                                | 0 – 100  | ± 15 | -    | 90  | - « -          |
| пиловый            | - " -                            | 0 – 200  | ± 15 | -    |     |                |
| спирт              |                                  | 0 – 300  | ± 15 | -    |     |                |
| Диэтило-           |                                  | 0 – 50   | ± 15 | _    | 90  | Контроль ПДК,  |
| вый эфир           | _ " _                            | 50 - 200 | _    | ± 15 |     | при аварийных  |
|                    |                                  |          |      |      |     | ситуациях      |
| Метилме-           | Organic                          | 0 – 50   | ± 15 | -    | 90  | При аварийных  |
| такрилат           | Vapors*                          | 0 – 100  | ± 15 | _    |     | ситуациях      |
|                    | (OV)                             |          |      |      |     |                |
|                    |                                  |          |      |      |     |                |
| Стирол             |                                  | 0 – 100  | ± 15 | -    | 90  | - « -          |
|                    | - " -                            |          |      |      |     |                |
| Озон               | O <sub>3</sub>                   | 0 – 0,5  | ± 20 | -    | 30  | - « -          |
|                    |                                  | 0 – 1    | ± 20 | -    |     |                |
|                    |                                  | 0 – 5    | -    | -    |     |                |
|                    |                                  | (0 – 1   | ± 20 | -    |     |                |
|                    |                                  | 1 – 5)   | _    | -    |     |                |
|                    |                                  |          |      |      |     |                |
| Гидразин           | Hydra-                           | 0 – 0,1  | ± 20 | -    | 300 | Контроль ПДК , |
|                    | zine*                            | 0,1-0,3  | -    | ± 20 |     | при аварийных  |
|                    | (N <sub>2</sub> H <sub>4</sub> ) | 0 – 1    | ± 20 | -    |     | ситуациях      |
|                    |                                  | 0 – 3    | ± 20 | -    |     |                |
| V                  | 1.01+                            | 0 4      | . 22 |      | 20  |                |
| Хлор               | L Cl <sub>2</sub> *              | 0 – 1    | ± 20 | -    | 30  | - « -          |
| (Dräger            |                                  | 1 – 5    | -    | ± 20 |     |                |
| Polytron           |                                  | 0 – 10   | ± 20 | -    |     |                |
| LC1 <sub>2</sub> ) |                                  | 0 – 50   | ± 15 | -    |     |                |
|                    |                                  |          |      |      |     |                |

| 1           | 2       | 3      | 4    | 5    | 6  | 7             |
|-------------|---------|--------|------|------|----|---------------|
| Хлористый   | L       | 0 – 5  | ± 20 | -    | 30 | Контроль ПДК, |
| водород     | HF/HC1* | 5 – 20 | -    | ± 20 |    | при аварийных |
|             |         |        |      |      |    | ситуациях     |
| Фторис-     | - « -   | 0 – 5  | ± 20 | -    | 30 | При аварийных |
| тый водород |         | 5 – 20 | -    | ± 20 |    | ситуациях     |
|             |         |        |      |      |    |               |
| (Dräger     |         |        |      |      |    |               |
| Polytron L  |         |        |      |      |    |               |
| HF/HC1)     |         |        |      |      |    |               |

# Примечания:

- 1. \* при условии загазованности контролируемой воздушной среды источниками, выделяющими только один определяемый компонент.
- 2. При контроле в воздухе рабочей зоны компонентов, указанных в документации фирмы «Drager Safety AG & Co.KGaA», но не приведенных в таблице 1, датчики применяются в качестве индикаторов для предварительной оценки содержания компонентов с последующим анализом по методикам выполнения измерений (МВИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-96.

Таблица 2.

Метрологические характеристики датчиков Dräger Polytron 2/2 XP TOX/L/3000/7000, модификации Dräger Polytron 3000

| Определяе-  | Обозна- | Диапазон                | Пределы                               | •           | Предел                       | Назначение    |
|-------------|---------|-------------------------|---------------------------------------|-------------|------------------------------|---------------|
| мый компо-  | чение   | измерений               | допускаем                             | иой         | допускае-                    |               |
| нент        | сенсора | объемной                | основной                              |             | мого вре-                    |               |
|             |         | доли,                   | погрешно                              | сти, %      | мени уста-                   |               |
|             |         | млн <sup>-1</sup> (ppm) | Приве-                                | Относи-     | новления                     |               |
|             |         | ,                       | денной ( <sub>?</sub> )               | тельной (δ) | показаний                    |               |
|             |         |                         | , , , , , , , , , , , , , , , , , , , | (0)         | $T_{0,9}{}_{/\!\!\!\!/}$ , c |               |
| 1           | 2       | 3                       | 4                                     | 5           | 6                            | 7             |
| Оксид       | СО      | 0 – 20                  | ± 20                                  | -           | 40                           | Контроль ПДК, |
| углерода    |         | 20 – 100                | -                                     | ± 20        |                              | при аварийных |
|             |         | 0 – 300                 | ± 10                                  | -           |                              | ситуациях     |
|             |         | 0 - 1000                | ± 10                                  | -           |                              |               |
|             |         |                         |                                       |             |                              |               |
|             | COLS    | 0 – 300                 | ± 10                                  | -           | 60                           | При аварийных |
|             |         |                         |                                       |             |                              | ситуациях     |
| Оксид азота | NO LC   | 0 – 50                  | ± 20                                  | -           | 60                           | - « -         |
|             |         | 0 – 200                 | _                                     | ± 20        |                              |               |
|             |         |                         |                                       |             |                              |               |

| 1             | 2                                 | 3         | 4    | 5    | 6   | 7              |
|---------------|-----------------------------------|-----------|------|------|-----|----------------|
| Диоксид азота | NO <sub>2</sub>                   | 0 – 10    | ± 20 | -    | 50  | При аварийных  |
|               |                                   |           |      |      |     | ситуациях      |
| Аммиак        | NH₃ HC                            | 0 – 30    | ± 20 | -    | 30  | Контроль ПДК,  |
|               |                                   | 30 – 300  | -    | ± 20 |     | при аварийных  |
|               |                                   | 0 – 1000  | ± 15 | -    |     | ситуациях      |
|               |                                   |           |      |      |     |                |
|               | NH₃ LC*                           | 0 – 30    | ± 20 | -    | 40  |                |
|               |                                   | 30 - 200  | -    | ± 20 |     | - « -          |
| Хлор          | Cl <sub>2</sub>                   | 0 – 0,3   | ± 20 | -    | 30  |                |
|               |                                   | 0,3 – 1   | -    | ± 20 |     | - « -          |
|               |                                   | 0 – 10    | ± 20 | -    |     |                |
|               |                                   | 0 – 25    | ± 15 | -    |     |                |
| Фосфин        | PH <sub>3</sub> *;                | 0 – 0,1   | ± 20 | -    | 40  | При аварийных  |
|               | Hydride*                          | 0,1 - 0,3 | -    | ± 20 |     | ситуациях      |
|               | (PH <sub>3</sub> )                | 0 - 0,3   | ± 20 | -    |     |                |
|               |                                   | 0,3 - 1   | _    | ± 20 |     |                |
|               |                                   | 1 – 10    | _    | _    |     |                |
|               |                                   |           |      |      |     |                |
|               |                                   |           |      |      |     |                |
| Этилен оксид  | Organic                           | 0 – 50    | ± 15 | -    | 90  | - « -          |
|               | Vapors*                           |           |      |      |     |                |
|               | (OV)                              |           |      |      |     |                |
| Водород       | H <sub>2</sub>                    | 0 – 1000  | ± 10 | -    | 40  | ПДК отсутству- |
|               |                                   | 0 – 3000  | ± 10 | -    |     | ет             |
| Сероводород   | H₂S LC                            | 0 – 7     | ± 20 | -    | 40  | Контроль ПДК,  |
|               |                                   | 7 – 20    | -    | ± 20 |     | при аварийных  |
|               |                                   | 0 – 50    | ± 15 | -    |     | ситуациях      |
|               |                                   | 0 - 100   | ± 15 | -    |     |                |
| Хлористый     | HCI S                             | 0 – 3     | ± 20 | -    | 30  | - « -          |
| водород       |                                   | 3 – 30    | _    | ± 20 |     |                |
|               |                                   |           |      |      |     |                |
| Цианистый     | HCN*                              | 0 – 10    | ± 15 | -    | 40  | При аварийных  |
| водород       |                                   | 10 – 50   | -    | -    |     | ситуациях      |
| Гидразин      | Hydra-                            | 0 – 1     | ± 20 | -    | 300 | - « -          |
|               | zine                              |           |      |      |     |                |
|               | (N <sub>2</sub> H <sub>4</sub> *) |           |      |      |     |                |

| 1            | 2                 | 3         | 4    | 5    | 6  | 7              |
|--------------|-------------------|-----------|------|------|----|----------------|
| Кислород     | O <sub>2</sub>    | 0 – 5 %   | ± 5  | -    | 40 | Контроль ки-   |
|              |                   | об.доля   |      |      |    | слорода в воз- |
|              |                   | 5 – 25 %  | -    | ± 5  |    | духе рабочей   |
|              |                   | об.доля   |      |      |    | зоны           |
|              |                   |           |      |      |    |                |
|              |                   | 0 – 100 % | ± 1  | -    |    |                |
|              |                   | об.доля   |      |      |    |                |
|              |                   |           |      |      |    |                |
| Кислород     | O <sub>2</sub> LS | 0 – 5 %   | ± 5  | -    | 40 |                |
|              |                   | об.доля   |      |      |    |                |
|              |                   | 5 – 25 %  | -    | ± 5  |    | - « -          |
|              |                   | об.доля   |      |      |    |                |
| Озон         | O <sub>3</sub>    | 0 – 1     | ± 20 | -    | 30 | При аварийных  |
|              |                   |           |      | -    |    | ситуациях      |
| Диоксид серы | SO <sub>2</sub>   | 0 – 3     | ± 20 | -    | 45 | Контроль ПДК   |
|              |                   | 3 – 10    | -    | ± 20 |    |                |
|              |                   |           |      |      |    |                |

Примечания: см. примечания к таблице 1.

- 2. Номинальная цена единицы наименьшего разряда цифрового дисплея составляет:
- $0,01\ {\rm млн}^{-1}\ {\rm для}\ {\rm объемной}\ {\rm доли}\ {\rm до}\ 1\ {\rm млh}^{-1},$
- 0,1 млн<sup>-1</sup> для объемной доли до 10 млн<sup>-1</sup>,
- $1 \text{ млн}^{-1}$  для объемной доли более  $10 \text{ млн}^{-1}$ ,
- 3. Предел допускаемой вариации показаний, в долях от предела допускаемой основной погрешности: 0,5.
- 4. Пределы допускаемой дополнительной погрешности от влияния изменения температуры окружающей среды в пределах рабочий условий на каждые  $10^{-0}$ C, в долях от предела допускаемой основной погрешности:  $\pm 0,5$ .
- 5. Пределы допускаемой дополнительной погрешности от влияния изменения относительной влажности окружающей среды от  $60\,$  до  $5\,$ % и от  $60\,$  до  $95\,$ % в долях от предела допускаемой основной погрешности:  $\pm\,0.5.$
- 6. Пределы допускаемой дополнительной погрешности от влияния изменения атмосферного давления в пределах рабочий условий на каждые 3,3 кПа, в долях от предела допускаемой основной погрешности:  $\pm$  0,4.
- 7. Пределы допускаемой дополнительной погрешности от влияния неизмеряемых компонентов, перечень и содержание в воздухе которых указан в Руководству по эксплуатации датчиков (сенсоров), в долях от предела допускаемой основной погрешности: 0,6.
- 8. Предел допускаемого изменения выходного сигнала (показаний) за 30 суток непрерывной работы, в долях от предела допускаемой основной погрешности: 0,3.
  - 9. Время прогрева (в зависимости от типа сенсора):
- от 5 мин до 12 ч.
- 10. Маркировка взрывозащиты для модификаций:

Таблица 3

| № п/п | Наименование                                                          | Кол-во         |
|-------|-----------------------------------------------------------------------|----------------|
| 1.    | Датчики газов электрохимические Dräger Polytron 2/2 XP                | В соответствии |
|       | TOX/3000/7000 модификаций Dräger Polytron 2, Dräger                   | с заказом      |
|       | Polytron 2 XP TOX, Dräger Polytron 3000, Dräger Polytron              |                |
|       | 7000, Dräger Polytron L CI <sub>2</sub> , Dräger Polytron L HF/HC1 (c |                |
|       | сенсорами согласно перечня таблиц 1 и 2)                              |                |
| 2.    | Калибровочный адаптер                                                 | 1              |
| 3.    | Ручной управляющий модуль "HART»*                                     | 1              |
| 4.    | Комплект принадлежностей**                                            | 1              |
| 5.    | Комплект запасных частей**                                            | 1              |
| 6.    | Руководство по эксплуатации                                           | 1              |
| 7.    | Методика поверки № МП-242-0639-2008                                   | 1              |

## Примечание:

- \* или другие устройства дистанционного управления с аналогичными функциями, указанные в документации фирмы Drager Safety AG & Co.KGaA" и имеющие разрешение Федеральной службы по экологическому, технологическому и атомному надзору на применение во взрывоопасных зонах.
- \*\* состав указанных комплектов приведен в руководстве по эксплуатации на каждую модификацию датчика.

#### ПОВЕРКА

Поверка датчиков газов электрохимических Dräger Polytron 2/2 XP TOX/L/3000/7000 проводится в соответствии с документом по поверке № МП-242-0639-2008 «Датчики газов электрохимические Dräger Polytron 2/2 XP TOX/L/3000/7000. Методика поверки", разработанным и утвержденным ГЦИ СИ «ВНИИМ им Д.И. Менделеева" в июне 2008 г.

В перечень основного поверочного оборудования входят:

- парофазные источники газовых смесей ПИГС по ТУ 4215-001-20810646-99 (№ 18358-05 в Госреестре РФ),
- генератор газовых смесей ГГС-03-03 по ШДЕК.418313.001 ТУ (№ 19351-05 в Госреестре РФ) в комплекте с в комплекте со стандартными образцами состава: газовые смеси  $H_2S/N_2$ ,  $NH_3/N_2$ ,  $CO/N_2$   $N_2$ ,  $C_2H_3CI/$   $N_2$  в баллонах под давлением по ТУ 6-16-2956-92;
- генератор термодиффузионный ТДГ-01 по ШДЕК.418319.001 ТУ (№ 19454-05 в Госреестре РФ) в комплекте с источниками микропотоков ИМ газов и паров по ИБЯЛ.418319.013 ТУ;
- стандартные образцы состава: газовые смеси  $CO/N_2$ ,  $O_2/N_2$ ,  $CO_2/N_2$ ,  $H_2/воздух$  (азот),  $C_5H_{12}/воздух$ ,  $HCI/N_2$  по ТУ 6-16-2956-92 (в баллонах под давлением);
- газоаналитический комплекс «МОГАИ-6» ИРМБ.413426.001 РЭ (№ 19858-00 в Госреестре РФ) для получения ПГС на основе НСN;
- газодинамическая установка ГДУ-34 гЯ6434.00.00.000 РЭ (№ 20616-00 в Госреестре РФ) для получения ПГС на основе  $COCI_2$ ;
  - установка газодинамическая высшей точности УВТ-Ф для получения ПГС на основе РН<sub>3</sub> (регистрационный № 60-А-89);
  - генератор озона типа ГС 7601 по ТУ 25-7407.040-90;
  - динамическая установка ГДУ-3Л гЯ.6433.00.00.000 ТО для получения ПГС на

Dräger Polytron 2
Dräger Polytron 2 XP TOX
Dräger Polytron 3000

Dräger Polytron 7000

Dräger Polytron L CI<sub>2</sub>

Dräger Polytron L HF/HC1

OExiaIICT4(T6) X;

1Exd[ia]IICT6 X; ExiaIICT4/T6 X

EXiaIICT4/T6 X или ExnLIICT4/T6 X.

OExiaIICT4X

OExiaIICT4X

11. Габаритные размеры и масса датчиков приведены в таблице 3.

#### Таблица 3

|                          | Габаритные | размеры, мм, | не более | Macca, |
|--------------------------|------------|--------------|----------|--------|
| Модификация              | длина      | ширина       | высота   | кг, не |
|                          |            |              |          | более  |
| Dräger Polytron 2        | 210        | 130          | 92       | 1,8    |
| Dräger Polytron 2 XP TOX | 275        | 146          | 135      | 2,5    |
| Dräger Polytron 3000     | 170        | 130          | 130      | 0,9    |
| Dräger Polytron 7000     | 175        | 130          | 135      | 0,9*   |
| Dräger Polytron L CI2,   | 210        | 110          | 110      | 1,8    |
| Dräger Polytron L HF/HC1 |            |              |          |        |

Примечание: без насосного и релейного модулей

12. Электрическое питание датчиков – постоянный ток напряжением (8 – 32) В. Номинальное напряжение питания для датчиков всех модификаций 24 В.

13. Полный срок службы датчиков (исключая сенсор):

не менее 15 лет.

14. Полный срок службы сенсоров:

3 - 5 лет.

- 15. Услевия эксплуатации:
- температура окружающей среды, °С:

от минус 40 до 65;

- атмосферное давление, кПа:

от 70 до 130;

- относительная влажность окружающей среды, %: от 0 до 100 (без конденсации).

- 16. Параметры анализируемой воздушной среды:
- температура от минус 40 до 65 °C;
- давление от 70 до 130 кПа;
- относительная влажность от 5 до 95 (без конденсации);
- скорость потока от 0 до 6 м/с;
- содержание неизмеряемых компонентов и пыли в соответствии с РЭ на соответствующий сенсор.

Примечание: Приведены предельные значения температуры и относительной влажности окружающей среды для датчиков с различными сенсорами. Конкретные значения указапных параметров приведены в РЭ на каждый сенсор.

## ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист Руководства по эксплуатации датчиков и на боковую поверхность приборов в виде наклейки.

### КОМПЛЕКТНОСТЬ

Комплектность поставки датчиков приведена в таблице 3.

Таблица 3

| № п/п | Наименование                                                                                                 | Кол-во         |
|-------|--------------------------------------------------------------------------------------------------------------|----------------|
| 1.    | Датчики газов электрохимические Dräger Polytron 2/2 XP                                                       | В соответствии |
|       | TOX/3000/7000 модификаций Dräger Polytron 2, Dräger Polytron 2 XP TOX, Dräger Polytron 3000, Dräger Polytron | с заказом      |
|       | 7000, Dräger Polytron L CI <sub>2</sub> , Dräger Polytron L HF/HC1 (c                                        |                |
|       | сенсорами согласно перечня таблиц 1 и 2)                                                                     |                |
| 2.    | Калибровочный адаптер                                                                                        | 1              |
| 3.    | Ручной управляющий модуль "HART»*                                                                            | 1              |
| 4.    | Комплект принадлежностей**                                                                                   | 1              |
| 5.    | Комплект запасных частей**                                                                                   | 1              |
| 6.    | Руководство по эксплуатации                                                                                  | 1              |
| 7.    | Методика поверки № МП-242-0639-2008                                                                          | 1              |

### Примечание:

- \* или другие устройства дистанционного управления с аналогичными функциями, указанные в документации фирмы Drager Safety AG & Co.KGaA" и имеющие разрешение Федеральной службы по экологическому, технологическому и атомному надзору на применение во взрывоопасных зонах.
- \*\* состав указанных комплектов приведен в руководстве по эксплуатации на каждую модификацию датчика.

### ПОВЕРКА

Поверка датчиков газов электрохимических Dräger Polytron 2/2 XP TOX/L/3000/7000 проводится в соответствии с документом по поверке № МП-242-0639-2008 «Датчики газов электрохимические Dräger Polytron 2/2 XP TOX/L/3000/7000. Методика поверки", разработанным и утвержденным ГЦИ СИ «ВНИИМ им Д.И. Менделеева" в июне 2008 г.

В перечень основного поверочного оборудования входят:

- парофазные источники газовых смесей ПИГС по ТУ 4215-001-20810646-99 (№ 18358-05 в Госреестре РФ),
- генератор газовых смесей ГГС-03-03 по ШДЕК.418313.001 ТУ (№ 19351-05 в Госреестре РФ) в комплекте с в комплекте со стандартными образцами состава: газовые смеси  $H_2S/N_2$ ,  $NH_3/N_2$ ,  $CO/N_2$   $N_2$ ,  $C_2H_3CI/$   $N_2$  в баллонах под давлением по ТУ 6-16-2956-92;
- генератор термодиффузионный ТДГ-01 по ШДЕК.418319.001 ТУ (№ 19454-05 в Госреестре РФ) в комплекте с источниками микропотоков ИМ газов и паров по ИБЯЛ.418319.013 ТУ;
- стандартные образцы состава: газовые смеси  $CO/N_2$ ,  $O_2/N_2$ ,  $CO_2/N_2$ ,  $H_2/воздух (азот), <math>C_5H_{12}/воздух$ ,  $HCI/N_2$  по ТУ 6-16-2956-92 (в баллонах под давлением);
- газоаналитический комплекс «МОГАИ-6» ИРМБ.413426.001 РЭ (№ 19858-00 в Госреестре РФ) для получения ПГС на основе НСN;
- газодинамическая установка ГДУ-34 гЯ6434.00.00.000 РЭ (№ 20616-00 в Госреестре РФ) для получения ПГС на основе COCI<sub>2</sub>;
  - установка газодинамическая высшей точности УВТ-Ф для получения ПГС на основе  $PH_3$  (регистрационный № 60-A-89);
  - генератор озона типа ГС 7601 по ТУ 25-7407.040-90;
  - динамическая установка ГДУ-3Л гЯ.6433.00.00.000 ТО для получения ПГС на

### основе гидразина;

- установка высшей точности УВТ-Ар для получения ПГС на основе AsH<sub>3</sub> (регистрационный № 59-A-89);
  - поверочный нулевой газ воздух по ТУ 6-21-5-85. Межповерочный интервал – 1 год.

## НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

- 1 ГОСТ 8.578-2002 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.
- 2. ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия».
- 3. ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны".
  - 4. Техническая документация фирмы-изготовителя.

#### **ЗАКЛЮЧЕНИЕ**

Тип датчиков газов электрохимических Dräger Polytron 2/2 XP TOX/L/3000/7000 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при ввозе в РФ, после ремонта и в эксплуатации согласно государственной поверочной схеме.

Датчики Dräger Polytron 2/2 XP TOX/L/3000/7000 (модификаций Dräger Polytron 2, Dräger Polytron 2 XP TOX, Dräger Polytron L, Dräger Polytron 7000, Dräger Polytron 3000) имеют сертификат соответствия ГОСТ Р № РОСС DE.МЕ92.В01358 от 15.02.2008 г., выдан негосударственным фондом «Межотраслевой орган сертификации «СЕРТИУМ», Москва.

Изготовитель — фирма "Drager Safety AG & Co.KGaA", Германия, Д-23560, г. Любек, Ревальштрассе 1.

Ремонт производится на фирме "Drager Safety AG & Co.KGaA", Германия, Д-23560, г. Любек, Ревальштрассе 1.

Руководитель НИО

Государственных эталонов

в области физико-химических измерений

ГЦИ СИ "ВНИИМ им. Д.И. Менделеева" =

Л.А. Конопелько

Директор отделения

«Стационарные газоизмерительные системы»

фирмы «Drager Safety AG & Co.KGaA»

Л-р. Р. Кессель

Drager Safety AG & Co. KGar

23560 Lübeck