ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Источники питания постоянного тока Agilent серии 6600

Назначение средства измерений

Источники питания постоянного тока Agilent серии 6600 (далее – источники) предназначены для воспроизведения напряжения и силы постоянного тока и питания радиотехнических устройств стабилизированным постоянным напряжением и током.

Описание средства измерений

Источники представляют собой программируемые, регулируемые источники постоянного тока и напряжения с одним выходом. Семейство источников серии 6600 включает 23 модификации:

- модификации 6641A, 6642A, 6643A, 6644A, 6645A с выдаваемой мощностью до 200 Вт;
- модификации 6651A, 6652A, 6653A, 6654A, 6655A с выдаваемой мощностью до 500 Вт;
- модификации 6671A, 6672A, 6673A, 6674A, 6675A с выдаваемой мощностью до 2000 Вт;
- модификации 6680A, 6681A, 6682A, 6683A, 6684A с выдаваемой мощностью до 5000 Вт;
- модификации 6690A, 6691A, 6692A с выдаваемой мощностью до 6600 Вт.

Управление и контроль за режимами работы источников питания осуществляет встроенный микропроцессор.

Внешний вид источников с указанием мест нанесения знака утверждения типа и мест пломбировки от несанкционированного доступа приведены на рисунках 1 - 8.

При оформлении внешнего вида источников могут использоваться логотипы компаний «Agilent Technologies» или «Keysight Technologies».

Рисунок 1 – Внешний вид источников серии 664хA

Рисунок 3 – Внешний вид источников серий 665хA, 667хA

Рисунок 2 - Задняя панель источников серии 664xA

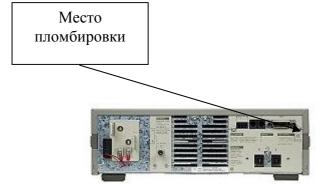


Рисунок 4 - Задняя панель источников серий 665хA, 667хA

Рисунок 5 – Внешний вид источников серии 668хA

Рисунок 6 - Задняя панель источников серии 668хA

Рисунок 7 – Внешний вид источников серии 669хA

Рисунок 8 - Задняя панель источников серии 669хA

На передней панели источников расположены:

- жидкокристаллический цифровой индикатор для отображения параметров напряжения и тока на выходе в цифровом виде;
- светодиодные сигнализирующие индикаторы для отображения состояния источника питания в процессе работы;
 - клавиша включения/ выключения источника питания;
- функциональные клавиши и поворотные переключатели, с помощью которых производится настройка уровня выходного напряжения или тока.

На задней панели источников питания расположены:

- выходные разъёмы положительной и отрицательной полярности;
- разъём питания от сети переменного тока;
- блок переключателей для выбора режима дистанционного программирования.

Отличие модификаций источников друг от друга заключается в разных значениях выходных параметров напряжений и токов.

Метрологические и технические характеристики

Метрологические и технические характеристики источников приведены в таблицах 1 - 3.

Таблица 1 – Метрологические характеристики источников в режиме стабилизации выходного напряжения постоянного тока

напряжения постоянного тока							
Модификация	Максимальное	Пределы допускаемой	Нестабильность выходного напря-		Уровень		
	напряжение	абсолютной погрешности	жения постоянного тока		пульсаций		
	на выходе	установки выходного на-	при изменении	при изменении	выходного		
		пряжения постоянного	напряжения пи- тока нагрузки		напряже-		
6611 A	0 D	TOK8	тания	+ 1 v/D	ния		
6641A	8 B	$\pm (0.0006 \cdot \text{U}_{\text{ycr}} + 5 \text{ MB})$	± 0,5 мB	± 1 MB	± 0,3 MB		
6642A	20 B	$\pm (0.0006 \cdot U_{yct} + 10 \text{MB})$	± 0,5 MB	± 2 MB	± 0,3 MB		
6643A	35 B	$\pm (0.0006 \cdot U_{yct} + 15 \text{ MB})$	±1 мВ	± 3 мВ	± 0,4 мВ		
6644A	60 B	$\pm (0,0006 \cdot U_{yct} + 26 \text{ MB})$	±1 мВ	± 4 мВ	\pm 0,5 MB		
6645A	120 B	$\pm (0,0006 \cdot U_{yct} + 51 \text{ mB})$	± 2 мВ	± 5 мВ	± 0,7 мВ		
6651A	8 B	$\pm (0,0006 \cdot U_{yct} + 5 \text{ MB})$	± 0,5 мВ	±1 мВ	\pm 0,3 MB		
6652A	20 B	$\pm (0,0006 \cdot U_{\text{yct}} + 10 \text{ MB})$	± 0,5 мВ	±2 мВ	\pm 0,3 MB		
6653A	35 B	$\pm (0,0006 \cdot U_{yct} + 15 \text{ MB})$	±1 мВ	± 3 мВ	\pm 0,4 MB		
6654A	60 B	$\pm (0,0006 \cdot U_{yct} + 26 \text{ MB})$	±1 мВ	±4 мВ	± 0,5 мВ		
6655A	120 B	$\pm (0.0006 \cdot U_{vct} + 51 \text{MB})$	± 2 мВ	± 5 мВ	± 0,7 мВ		
6671A	8 B	$\pm (0.0004 \cdot U_{yct} + 8 MB)$	$\pm (0.00002 \cdot U_{yct} +$	$\pm (0.00002 \cdot U_{vcr} +$	± 0,65 мВ		
		ye. ,	+0,3 мВ)	+0,3 MB)			
6672A	20 B	$\pm (0.0004 \cdot U_{vct} + 20 \text{ MB})$	$\pm (0.00002 \cdot U_{vct} +$	±(0,00002 · U _{ycr} +	± 0,75 мВ		
		(1)-11-1 - yel	+0,65 мВ)	+0,65 мВ)			
6673A	35 B	$\pm (0.0004 \cdot U_{vct} + 35 \text{ MB})$	$\pm (0.00002 \cdot U_{vct} +$	±(0,00002 · U _{vcr} +	± 0,8 мВ		
		(1)-11 - yel	+1,2 мВ)	+1,2 MB)			
6674A	60 B	$\pm (0,0004 \cdot U_{yct} + 60 \text{ MB})$	$\pm (0.00002 \cdot U_{vct} +$	±(0,00002 · U _{vcr} +	± 1,25 мВ		
		(1)-11 - yel	+2 MB)	+2 MB)	,		
6675A	120 B	$\pm (0.0004 \cdot U_{vct} + 120 \text{MB})$	$\pm (0.00002 \cdot U_{vct} +$	$\pm (0,00002 \cdot U_{vcr} +$	± 1,9 мВ		
		(1)111 - yel		+4 MB) +4 MB)			
6680A	5 B	$\pm (0.0004 \cdot U_{vct} + 5 MB)$	$\pm (0.00002 \cdot U_{vct} +$	±(0,00002 · U _{ycr} +	±1,5 мВ		
		(1)-11-1-yei	+0,19 мВ)	+0,19 мВ)	,		
6681A	8 B	$\pm (0.0004 \cdot U_{vct} + 8 \text{ MB})$	$\pm (0,00002 \cdot U_{yct} +$	±(0,00002 · U _{vcr} +	±1,5 мВ		
		(1)11 - yel	+0,3 MB)	+0,3 MB)	,		
6682A	21 B	$\pm (0.0004 \cdot U_{vct} + 21 \text{ MB})$	$\pm (0,00002 \cdot U_{yct} +$	±(0,00002 · U _{ycr} +	±1,5 мВ		
		_ (3,333 · 3,561 · 25 3.2)	+0,65 MB)	+0,65 MB)	,		
6683A	32 B	$\pm (0.0004 \cdot U_{vct} + 32 \text{ MB})$	$\pm (0.00002 \cdot U_{vcr} +$	$\pm (0,00002 \cdot U_{vcr} +$	±1 мВ		
		= (0,000 : 0 yei : 02 iii2)	+1,1 MB)	+1,1 MB)			
6684A	40 B	$\pm (0,0004 \cdot U_{vct} + 40 \text{ mB})$	$\pm (0.00002 \cdot U_{vcr} +$		±1 мВ		
		= (0,000 : Cyc ₁ : 10 ME)	+1,5 MB)	+1,5 MB)			
6690A	15 B	$\pm (0,0004 \cdot U_{vct} + 15 \text{ mB})$	$\pm (0.00002 \cdot U_{vcr} +$	$\pm (0,00002 \cdot U_{vcr} +$	± 2,5 мВ		
		= (0,000 : Cyc ₁ : 12 ME)	+0,65 MB)	+0,65 MB)			
6691A	30 B	$\pm (0,0004 \cdot U_{yct} + 30 \text{ MB})$	$\pm (0.00002 \cdot U_{vcr} +$	$\pm (0,00002 \cdot U_{vcr} +$	± 2,5 мВ		
007111		= (0,0001 Oyer 1 30 MD)	+0,65 MB)	+1,1 MB)			
6692A	60 B	$\pm (0.0004 \cdot U_{vct} + 60 \text{ mB})$	$\pm (0.00002 \cdot U_{vcr} +$		± 2,5 мВ		
00,211	00 B	= (0,000 + Oyer 00 MD)	+0,65 MB)	+2,2 MB)			
Примечание - Ц							
Примечание - U_{ycr} - значение воспроизводимого напряжения постоянного тока							

Таблица 2 — Метрологические характеристики источников в режиме стабилизации выходного постоянного тока

Модификация Максимальна сила тока на		Предел допускаемой абсолютной погрешности ус-	Нестабильност постоянно	Уровень пульсаций	
	выходе	тановки выходного посто-	при изменении		выходного
	выходе	янного тока	напряжения	при изменении напряжения на	тока
		Annoto Toku	питания	нагрузке	TORU
6641A	20 A	$\pm (0.0015 \cdot I_{yct} + 26 \text{MA})$	± 1 мA	± 1 мA	± 10 мА
6642A	10 A	$\pm (0.0015 \cdot I_{yct} + 13 \text{ mA})$	± 0,5 mA	± 0,5 мA	± 5 мА
6643A	6 A	$\pm (0.0015 \cdot I_{vct} + 6.7 \text{MA})$	± 0,25 mA	± 0,25 mA	± 3 мА
6644A	3,5 A	$\pm (0.0015 \cdot I_{vct} + 4.1 \text{ mA})$	± 0,25 mA	± 0,25 mA	± 1,5 мА
6645A	1,5 A	$\pm (0.0015 \cdot I_{yct} + 1.7 \text{MA})$	± 0,25 mA	± 0,25 mA	±1 мА
6651A	50 A	$\pm (0.0015 \cdot I_{yct} + 60 \text{ mA})$	± 2 мA	± 2 мА	± 25 мА
6652A	25 A	$\pm (0.0015 \cdot I_{yct} + 25 \text{ mA})$	±1 мА	±1 мА	± 10 мА
6653A	15 A	$\pm (0.0015 \cdot I_{yct} + 13 \text{ mA})$	± 0,75 mA	± 0,5 мA	± 5 мА
6654A	9 A	$\pm (0.0015 \cdot I_{vct} + 8 \text{ MA})$	± 0,5 mA	± 0,5 мA	± 3 мА
6655A	4 A	$\pm (0.0015 \cdot I_{vct} + 4 \text{ MA})$	± 0,5 мA	± 0,5 мA	± 2 мА
6671A	220 A	$\pm (0.001 \cdot I_{vct} + 125 \text{ mA})$	$\pm (0.00005 \cdot I_{yct} +$	$\pm (0.00005 \cdot I_{vet} +$	± 200 mA
		Jei ,		+ 10 мА)	
6672A	100 A	$\pm (0.001 \cdot I_{yct} + 60 \text{ mA})$	$\pm (0.00005 \cdot I_{yct} +$		± 100 мА
		, , , , , , , , , , , , , , , , , , , ,	-	+7 мА)	
6673A	60 A	$\pm (0.001 \cdot I_{vct} + 40 \text{ mA})$	$\pm (0.00005 \cdot I_{yct} +$	$\pm (0.00005 \cdot I_{vet} +$	± 40 мА
				+4 MA)	
6674A	35 A	$\pm (0.001 \cdot I_{vcr} + 25 \text{ mA})$	$\pm (0,00005 \cdot I_{yct} +$		± 25 мА
		-		+2 мА)	
6675A	18 A	$\pm (0.001 \cdot I_{yct} + 12 \text{ MA})$	$\pm (0.00005 \cdot I_{yct} +$	$\pm (0.00005 \cdot I_{yct} +$	$\pm 12 \text{ MA}$
			+1 mA)	+1 мА)	
6680A	875 A	$\pm (0.001 \cdot I_{yct} + 450 \text{ MA})$	$\pm (0.00005 \cdot I_{yct} +$	$\pm (0.00005 \cdot I_{yct} +$	$\pm 290 \text{ MA}$
			+65 мА)	+ 65 мА)	
6681A	580 A	$\pm (0.001 \cdot I_{yct} + 300 \text{ MA})$	$\pm (0.00005 \cdot I_{yct} +$		± 190 мА
				+ 40 мА)	
6682A	240 A	$\pm (0.001 \cdot I_{yct} + 125 \text{ mA})$	$\pm (0.00005 \cdot I_{yct} +$		$\pm 40 \text{ MA}$
				+ 17 мА)	
6683A	160 A	$\pm (0.001 \cdot I_{yct} + 85 \text{ mA})$	$\pm (0.00005 \cdot I_{yct} +$	$\pm (0,00005 \cdot I_{yct} +$	$\pm 28 \text{ MA}$
			+12 mA)		
6684A	128 A	$\pm (0.001 \cdot I_{yct} + 65 \text{ MA})$	$\pm (0.00005 \cdot I_{yct} +$		± 23 mA
				+ 9 мА)	
6690A	440 A	$\pm (0.001 \cdot I_{yct} + 230 \text{ mA})$	$\pm (0.00005 \cdot I_{yct} +$		± 200 mA
				+ 40 мА)	
6691A	220 A	$\pm (0.001 \cdot I_{yct} + 125 \text{ mA})$	$\pm (0.00005 \cdot I_{yct} +$		± 50 мА
			1	+ 17 мА)	
6692A	110 A	$\pm (0.001 \cdot I_{yct} + 65 \text{ mA})$	$\pm (0.00005 \cdot I_{yct} +$		$\pm 30 \text{ MA}$
			+9 mA)	+9 мА)	

Тоблицо	2	Габаритные	nonvoni i ii	140000	нотонников
таолица	5 —	т абаритныс	размеры и	macca	источников

Модификация	Габаритные размеры (длина х	Масса, кг, не более
	ширина х высота), мм, не более	
6641A, 6642A, 6643A, 6644A, 6645A	426 x 89 x 439	14,2
6651A, 6652A, 6653A, 6654A, 6645A	426 x 133 x 498	25,0
6671A, 6672A, 6673A, 6674A, 6675A	426 x 146 x 640	27,7
6680A, 6681A, 6682A, 6683A, 6684A	426 x 222 x 675	51,3
6690A, 6691A, 6692A	426 x 222 x 675	51,3

Параметры электропитания:

Рабочие условия эксплуатации:

- температура окружающего воздуха, °С от 0 до 40;
- относительная влажность окружающего воздуха, % от 30 до 90, без конденсации;

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом (в верхнем правом углу) и маркируется на передней панели источников в виде голографической наклейки.

Комплектность средств измерений

Комплект поставки приведен в таблице 5.

Таблица 4

Наименование	Количество, шт.
Источник питания постоянного тока Agilent серии 6600 (модифика-	1
ция - по заказу)	
Сетевой шнур	1
Компакт-диск с программным обеспечением для автоматизации	1
Компакт-диск со справочной информацией	1
Руководство по эксплуатации	1
Методика поверки	1
Паспорт	1

Поверка

осуществляется в соответствии с документом МП-067/447-2008 «ГСИ. Источники питания постоянного тока Agilent серии 6600. Методика поверки», утвержденным руководителем ГЦИ СИ ФГУ «РОСТЕСТ – МОСКВА» в июле 2008 г.

Основные средства поверки:

- цифровой мультиметр APPA-109 (рег. № 20085-11), диапазон напряжения постоянного тока от 20 мВ до 1000 В, пределы допускаемой относительной погрешности измерений напряжения \pm 0,05 %, диапазон силы постоянного тока от 20 мА до 10 А, пределы допускаемой относительной погрешности измерений силы постоянного \pm 0,06 %;
- катушка электрического сопротивления P310 (рег. № 1162-58), номинальные значения сопротивления 0,001 Ом, 0,01 Ом, 0,01 Ом, 0,01 См, 0,01
- катушка сопротивления электрическая P323 (рег. № 1683-62), номинальное значение сопротивления 0,0001 Ом, класс точности 0,05;

- нагрузка электронная многофункциональная ELTO SHH-2,4К (рег. № 28929-05), входные параметры: напряжение постоянного тока 500 В, сила постоянного тока 120 А, мощность 2,4 кВт;
- микровольтметр B3-57 (рег. № 7657-80), диапазон измерений напряжения от 0,01 мВ до 300 В, пределы допускаемой приведенной погрешности измерений напряжения: \pm 4,0 % (0,03 В), \pm 2,0 % (0,1-0,3 мВ, 1-300 В), \pm 1,5 % (1-10 мВ), \pm 1,0 % (30-300 мВ).

Сведения о методиках (методах) измерений

Источники питания постоянного тока Agilent серии 6600. Руководство по эксплуатации.

Нормативные и технические документы, устанавливающие требования к источникам питания постоянного тока Agilent серии 6600

- 1 ГОСТ 8.027-2001 ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы.
- $2~\Gamma OCT~8.022$ -91 $\Gamma CИ$. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1\cdot 10^{-16}$ до 30~A.
 - 3 Техническая документация изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Компания «Keysight Technologies Microwave Products (M) Sdn.Bhd.», Малайзия Bayan Lepas Free Industrial Zone PG 11900 Bayan Lepas Penang Malaysia

Испытательный центр

Государственный центр испытаний средств измерений Федеральное бюджетное учреждение «РОСТЕСТ-МОСКВА» (ГЦИ СИ ФБУ «РОСТЕСТ-МОСКВА»).

Юридический (почтовый) адрес: 117418, г. Москва, Нахимовский проспект, д. 31.

Тел. (499) 129-19-11, факс (499) 124-99-96

E-mail: info@rostest.ru

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 г.

Заместитель Руководителя			
Федерального агентства по техническому			
регулированию и метрологии			Ф.В. Булыгин
		«»	2014 г.
	М.п.		