ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Мультиметры цифровые серии DM3000 моделей DM3061, DM3062, DM3064, DM3051, DM3052, DM3054 и DM3058

Назначение средства измерений

Мультиметры цифровые серии DM3000 предназначены для измерения напряжения постоянного и переменного тока, силы постоянного и переменного тока, частоты переменного тока, электрического сопротивления, электрической емкости и температуры.

Описание средства измерений

Мультиметры серии DM3000 моделей DM3061, DM3062, DM3064, DM3051, DM3052, DM3054 и DM3058 построены на базе прецизионного аналого-цифрового преобразователя с разрешением 2400000 уровней (более 6½ десятичных разрядов) и встроенного микропроцессора, управляющего процессом изменений, выводом результатов измерений на дисплей, внешними устройствами и внутренней памятью. Указанные модели различаются разрешением и интерфейсами. При измерениях на переменном токе и переменном токе с постоянной составляющей используется вычисление истинных среднеквадратических значений с помощью быстрого преобразования Фурье, обеспечивающее высокую точность. Для связи для управления с компьютера и передачи результатов измерений на компьютер или принтер используются различные интерфейсы (таблица 3)

Мультиметры измеряют: напряжение и силу постоянного тока, напряжение, силу и частоту переменного тока, напряжение и силу переменного тока с постоянной составляющей, сопротивление, ёмкость, относительную ширину импульса и температуру. Мультиметры приспособлены для совместной работы с измерительными преобразователями различных физических величин, с установкой их наименования и пределов измерений.

Мультиметры позволяют производить однократные, счётные и периодические измерения. Скорость выборки результатов измерений может достигать 50000/с, и записываться в память объёмом 1 млн. ячеек.

Модели DM3064 и DM3054 имеют встроенные релейные переключатели (мультиплексоры), позволяющие подключать к входам мультиметра одну из 12 цепей дифференциального измерения напряжений, сопротивлений и ёмкостей, или одну из 4 цепей измерения силы тока. Время переключения составляет 0,04 с.

Мультиметры серии DM3000 могут выполнять пять математических функций: вычисление по результатам заданного числа измерений максимального, минимального, среднего значений (статистика), указывать количество выполненных измерений, измерение в дБ и дБм, проверку наличия сигнала в заданных пределах.

Мультиметры имеют систему подсказок в виде сообщений и встроенные часы, позволяющие сохранять результаты измерений с указанием времени их получения.

Мультиметры имеют системную утилиту установки функций настроек параметров, включающую: системные параметры, параметры интерфейса, самотестирование и калибровку.

Мультиметры имеют функции запоминания и вызова из памяти, позволяющие сохранять, загружать и удалять из локальной памяти данные и параметры измерений и использованных измерительных преобразователей. Разрешающая способность может иметь устанавливаться на значения: $4\frac{1}{2}$, $5\frac{1}{2}$, $6\frac{1}{2}$ десятичных разрядов.

Дополнительными функциями являются проверки электрической цепи на обрыв, короткое замыкание и тест диодов.

Конструктивно все модели выполнены в переносных корпусах из пластмассы с поворотными ручками для переноски и установки под нужным углом к опорной поверхности.

На лицевых панелях установлены органы управления, дисплей, контактные гнезда измерительных цепей и гнездо хоста USB. Разъёмы остальных интерфейсов, питания, предохранители и переключатель напряжения питания - на задней панели.

Многофункциональные жидкокристаллические дисплеи большого размера с подсветкой отображают: единицу измерений, вид тока (постоянный, переменный или постоянный с переменной составляющей) и выполняемую дополнительную функцию (например, автоматический выбора диапазона).

Питание – от сети переменного тока.

Рисунок 1. Вид мультиметров спереди.

Для предотвращения несанкционированного доступа к внутренним частям прибора осуществляется пломбировка корпуса специальными наклейками, при повреждении которых остается несмываемый след.

Программное обеспечение

Встроенное ПО реализовано аппаратно и является метрологически значимым. Метрологические характеристики нормированы с учетом влияния ПО.

Таблица 1 – Идентификационные данные программного обеспечения

Модель	Наимено- вание	Идентифи- кационное наименова- ние	Номер версии (идентифика- ционный номер)	Цифровой идентификатор (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора
серия DM300	Микро- программа	_	01.01.00.01.99.09	-	-

Программное обеспечение занесено в постоянное запоминающее устройство генератора и пользователю недоступно, средства программирования или изменения метрологически значимых функций отсутствуют.

Программное обеспечение может быть установлено или переустановлено только предприятием - изготовителем или авторизованным сервисом.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «А» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Таблица 2 - Пределы и допускаемые основные погрешности измерений.

	Частота	Пределы допускаемых основных		
Пределы измерений	сигнала	погрешностей измерений за 1 год		
	CHITIANA	± (% показания + % диапазона)		
Разрядность мультиметра		6 1/2	5 3/4	
Напряжение постоянного тока				
200,0000 мВ		0.0050 + 0.0017	0,025+0,002	
2,000000 B		0.0040 + 0.0004	0,025+0,002	
20,00000 B		0.0035 + 0.0003	0,025+0,002	
200,0000 B		0.0045 + 0.0003	0,025+0,002	
1000,000 B		0.0045 + 0.005	0,025+0,002	
Сила постоянного тока				
2,00,00 мА		0.005 + 0.005	0,02+0,02	
20,0000 мА		0.005 + 0.002	0,05+0,01	
200,000 мА		0.03 + 0.003	0,05+0,002	
1,00000 A		0.03 + 0.006	0,2+0,002	
10,0000 A		0.05 + 0.01	0,25+0,002	
Напряжение переменного тока				
Диапазон от 200 мВ до 750 В	3-5 Гц	1.00 + 0.01	1,00+0,05	
7.7	5-10 Гц	0.35 + 0.01	0,50+0,05	
	10 Гц -20	0.04 + 0.01	0,40+0,05	
	кГц			
	20-50 кГц	0.10 + 0.02	1,00+0,05	
	50-100 кГц	0.55 + 0.04	3,00+0,1	
	100-300 кГц	1.20 + 0.2	1,20+0,25	
Сила переменного тока	·			
20 мА10 А	3-10 Гц	0.35 + 0.02	1.5+ 0.04	
	10 Гц -5 кГц	0.1 + 0.04	0.5 + 0.04	
	510 кГц	0.2 + 0.04	2,0 + 0.04	
Сопротивление	·		,	
200,0000 Ом		0.010 + 0.0020	0.050 + 0.0020	
2,000000 кОм		0.010 + 0.0005	0.050 + 0.0020	
20,00000 кОм		0.010 + 0.0005	0.050 + 0.0020	
200,0000 кОм		0.010 + 0.0005	0.050 + 0.0020	
2,00000 МОм		0.010 + 0.0005	0.050 + 0.0020	
10,0000 МОм		0.040 + 0.0005	0.060 + 0.0020	
100,0000 МОм		0.080 + 0.0005	2.000 + 0.0020	
Ёмкость				
2,0000 нФ		0.5 + 0. 2	2,0 + 0. 2	
20,000 нФ		0.4 + 0.05	1,0+0.2	
200,00 нФ		0.4 + 0.05	1,0 + 0. 2	
2,0000 мкФ		0.4 + 0.05	1,0+0.2	
20,000 мкФ		0.4 + 0.05	1,0+0.2	
200,00 мкФ -10000 мкФ		0.1 + 0.05	1,0 + 0. 2	

Таблица 2 –продолжение

Частота и период					
модели DM3061, DM3062, DM3064, DM3051, DM3052, DM3054					
При напряжении от 0,2 до 750 В					
от 3 до 5 Гц		0,1	0,1		
от 5 до 10 Гц		0.07	0.07		
от 10 до 40 Гц		0.02	0.02		
от 40 Гц до 300 кГц		0.02	0.02		
При силе тока 20 мА до 10А					
от 3 до 5 Гц		0,1	0,1		
от 5 до 10 Гц		0.07	0.07		
от 10 Гц до 10 кГц		0.02	0.02		
Модель DM3058					
При напряжении от 0,2 до 750					
В		-	0,01+0,003		
20 Гц-200 кГц	-		0,01+0,006		
200 кГц -1 МГц					
При силе тока от 20 мА до 10А			0.01+0.002		
От 20 Гц до 10 кГц	-	-	0,01+0,003		

Пределы дополнительных погрешностей от температуры окружающего воздуха в рабочих условиях не более $\frac{1}{2}$ пределов основных погрешностей.

Таблица 3. Разрешение и интерфейсы

Модель	DM305	DM3052	DM3054	DM3058	DM3061	DM3062	DM3064
	1						
Разрешение	5 3/4 десятичных разрядов			6 1/2 десятичных разрядов			
Интерфей-	- LAN/GPIB		-	LAN/GPIB			
сы							

Опция: интерфейсы RS-232 и USB.

Таблица 4 – Общие технические характеристики

Напряжение сети питания, В	От 100 до 120/от 200 до 240		
Частота сети питания, Гц	От 45 до 65		
Потребляемая мощность, не более, ВА	20		
Электрическая прочность изоляции между	2300 (50 Гц, 1 мин.)		
разъёмами и корпусом, В	2300 (30 1 ц, 1 мин.)		
Сопротивление изоляции в рабочих условиях не менее,	5		
МОм			
Габаритные размеры (длина × ширина× высота), мм	290,5 x 231,6 x 107		
Масса не более, кг	2,5		

Таблица 5 - Рабочие условия

Температура воздуха, ° С	От 0 до + 55
Относительная влажность при 40 °C, %	До 80
Атмосферное давление, кПа (мм рт. ст.)	От 86,7 до 106,7 (от 650 до 800)
Устойчивость к условиям	Гр. «3» ГОСТ 22261-94 с расширенными
транспортирования	параметрами по температуре, от -25 до + 55 $^{\circ}$ С

Знак утверждения типа

Знак утверждения типа наносят типографским способом на обложку руководства по эксплуатации и на корпус генераторов в виде наклейки.

Комплектность средства измерений

Мультиметр, кабель USB, комплект диагностических кабелей, силовой кабель, руководство пользователя, методика поверки, модуль контроля (только с DM3063/64/53/54), кабель передачи данных BNC (только с DM3063/64/53/54), к моделям DM3054 и DM3064 модуль подсоединения входных цепей 12V4I к встроенным релейным переключателям с кабелем к нему.

Дополнительные аксессуары: Кабель Ethernet, кабель RS-232, кабель GPIB/КОП.

Поверка

осуществляется по документу МП 36286-08 «Мультиметры серии DM3000. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» 10.11.2008 г.

Средство поверки: калибратор универсальный FLUKE 5520A

```
пределы допускаемой абсолютной погрешности: \pm (0,000011 – 0,000018)· U; диапазон воспроизведения напряжения переменного тока: 1 мВ – 1020 В (10 Гц – 500 кГц); пределы допускаемой абсолютной погрешности: \pm (0,00015 – 0,002)· U; диапазон воспроизведения силы постоянного тока: 0 – 20,5 A; пределы допускаемой абсолютной погрешности: \pm (0,0001 – 0,0005)· I; диапазон воспроизведения силы переменного тока: 29 мкА –20,5 А (10 Гц – 30 кГц); пределы допускаемой абсолютной погрешности: \pm (0,0004 – 0,003)· I; диапазон воспроизведения частоты переменного тока: 0,01 Гц – 2 МГц; пределы допускаемой абсолютной погрешности: \pm (2,5·10-6)· f; диапазон воспроизведения электрического сопротивления: 0,0001 Ом – 1100 МОм; пределы допускаемой абсолютной погрешности: \pm (0,000028 – 0,003)· R; диапазон воспроизведения электрической емкости: 0,19 нФ – 110 мФ; пределы допускаемой абсолютной погрешности: \pm (0,0025 – 0,011)· C; имитация термометра сопротивления (1000 Ом): от минус 200 до 600 °C: \pm (0,03 – 0,07) °C. Где U, I, f, R – измеряемые величины
```

Сведения о методиках (методах) измерений

Методы измерений с помощью мультиметров цифровых DM3061, DM3062, DM3064, DM3051, DM3052, DM3054 и DM3058 указаны в документе «Мультиметры цифровые серии DM3000. Руководство пользователя».

Нормативные и технические документы, устанавливающие требования к мультиметрам цифровым DM3061, DM3062, DM3064, DM3051, DM3052, DM3054 и DM3058.

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 14014-91. Приборы и преобразователи измерительные цифровые напряжения, тока, сопротивления. Общие технические требования и методы испытаний.

ГОСТ Р 51350-99 Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1, Общие требования.

Техническая документация фирмы RIGOL Technologies, Inc., КНР

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Фирма «RIGOL Technologies, Inc.», КНР 102206, КНР, г. Пекин, р-н Чанпин, уезд Шахэ, п. Цайхэ, д.156 (156# CaiHe Village, ShaHe Town, ChangPing, Beijing, China) Телефон: (8610)80706688 Факс: (8610) 80720067

Сайт в Интернет: www.rigol.com электронная почта: support@rigol.com

Заявитель

Фирма TÜV Rheinland (China) Ltd., КНР

100022, Unit 707, AVIC Building, No.10B, Central Road, East 3rd Ring Road, Chaoyang District

Телефон +86 10 6566 6660-169

Сайт в Интернет: www.tuv.com электронная почта: doe@chn.tuv.com.

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66;

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин