ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Генераторы сигналов Г4-221, Г4-221/1

Назначение средства измерений

Генераторы сигналов Г4-221, Г4-221/1 предназначены для формирования немодулированных сигналов синусоидальной формы, амплитудно - моделированных сигналов синусоидальной формы, сигналов прямоугольной формы (меандр), сигналов прямоугольной формы уровня ТТЛ.

Генератор Г4-221/1 предназначен также для формирования сигналов синусоидальной и прямоугольной формы (меандр) повышенной амплитуды.

Описание средства измерений

Принцип действия генераторов сигналов Г4-221 и Г4-221/1 основан на методе прямого цифрового синтеза. -Синтезатор сигнала, построенный на микросхеме AD9835, управляется микропроцессорным устройством, которое обеспечивает перестройку частоты сигнала, а также индикацию частоты цифровым табло.

Генераторы выполнены в виде моноблока. Сигнал синусоидальной формы, сформированный синтезатором, усиливается и преобразуется в выходные сигналы синусоидальной формы напряжением не менее 10 В, прямоугольной формы типа «меандр» размахом не менее 28 В, прямоугольной формы уровня ТТЛ, в амплитудномодулированный сигнал.

Кроме этого, генератор сигналов Г4-221/1 имеет дополнительный усилитель, который усиливает сигнал синусоидальной формы до напряжения не менее 30 В и сигнал прямоугольной формы до размаха не менее 80 В.

Внешний вид генераторов сигналов приведен на рисунках 1 и 2, задняя панель генераторов сигналов – рисунок 3.

Рисунок 1 - Внешний вид генератора сигнала Г4-221

Рисунок 2 - Внешний вид генератора сигнала Г4-221/1

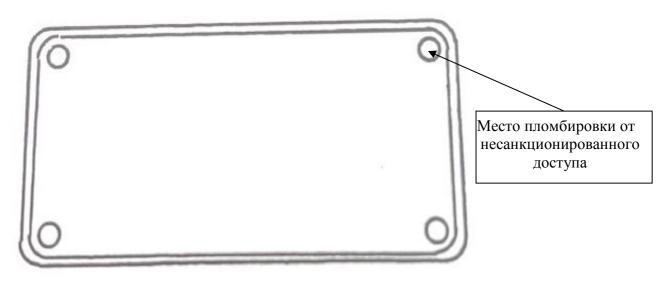


Рисунок 3 — Задняя панель генераторов сигналов Γ 4-221, Γ 4-221/1

Метрологические и технические характеристики

Метрологические и технические характеристики генераторов сигналов Γ 4-221, Γ 4-221/1 приведены в таблице 1.

Таблица 1

ІКИ
T
J —
ОГО

Параметры сигнала прямоугольной формы (уровень ТТЛ):	
- время перехода из «1» в «0» и из «0» в «1», нс, не более	100
- напряжение «1», В, не менее	2,4
- напряжение «0», В, не более	0,4
Максимальной напряжение сигнала синусоидальной формы	
повышенной амплитуды на нагрузке 1 кОм, В, не менее	30
Пределы допускаемой абсолютной погрешности установки	± (0,5 + 0,05U), где U –
напряжения сигнала синусоидальной формы повышенной	значение установленного
амплитуды в диапазоне частот от 10 Гц до 1 МГц, В	напряжения в В
Коэффициент гармоник сигнала синусоидальной формы	
повышенной амплитуды, %, не более:	
- в диапазоне частот от 10 до 100 Гц;	0,3
- в диапазоне частот св. 100 Гц до 120 кГц;	0,2
- в диапазоне частот св. 120 кГц до 1 МГц	1
Максимальный размах сигнала прямоугольной формы	
(меандр) повышенной амплитуды, В, не менее:	
- в диапазоне частот до 100 кГц;	80
- в диапазоне частот св. 100 кГц до 1 МГц	50
Пределы допускаемой абсолютной погрешности установки	
размаха сигнала прямоугольной формы повышенной	
амплитуды, В:	$\pm (0.5 + 0.1 \mathrm{U}),$
- в диапазоне частот от 10 Гц до 100 кГц;	\pm (0,5 + 0,2U), где U –
- в диапазоне частот св. 100 кГц до 1 МГц	значение установленного
	размаха в В
Питание от сети переменного тока:	
- напряжение, В;	230 ± 23
- частота, Гц	50 ± 0.5
Потребляемая мощность, В'А, не более	40
Диапазон температур рабочих условий применения, °С	от минус 10 до 50
Относительная влажность окружающего воздуха при 25 °C, %	до 90
Степень защиты оболочки по ГОСТ 14254-96	1P20
Габаритные размеры (длина х ширина х высота), мм, не более	345×306×127
Масса, кг, не более	4,5
Средняя наработка на отказ, ч, не менее	15000

Знак утверждения типа

наносится на переднюю панель генераторов сигналов Г4-221, Г4-221/1 методом офсетной печати, на эксплуатационную документацию – типографским методом.

Комплектность средства измерений

Комплектность генераторов сигналов Г4-221, Г4-221/1 приведена в таблице 2.

Таблица 2

Обозначение	Наименование	Количество, шт.	
		Γ4-221	Γ4-221/1
УШЯИ.468759.0222	Генератор сигналов Г4-221	1	1
УШЯИ.468759.023	Генератор сигналов Г4-221/1	1	1
УШЯИ.468759.022 РЭ	Руководство по эксплуатации	1	1
УШЯИ.468759.023 РЭ	Руководство по эксплуатации		1

УШЯИ.460874.001 МП (МРБ МП. 1544-2006)	Методика поверки	1	1
ШНУР сетевой SCZ-1		1	1
Кабель	Tr4.850.252	1	1
Кабель	РУВИ.685631.011	1	1
Продолжение таблицы 2			
Кабель интерфейсный	УШЯИ.685681.001	1	1
Нагрузка 50 Ом	УШЯИ.468548.010	1	1
Нагрузка 1 кОм	УШЯИ.468548.011		1
Вставка плавкая ВП2Б-1	ОЮ0.481.005ТУ	2	2
0,5A	0100.481.00313	2	2
УШЯИ.305642.189	Упаковка	1	1
УШЯИ.305642.189-01	Упаковка	1	1

Поверка

осуществляется в соответствии с документом УШЯИ.460874.001 МП (МРБ МП.1544-2006) «Генераторы сигналов Γ 4-221, Γ 4-221/1. Методика поверки», утвержденным Бел Γ ИМ в апреле 2006 года.

Основные средства поверки:

- частотомер электронно-счетный Ч3-63/1 (Госреестр № 9084-90); диапазон измеряемых частот от 0,1 Γ ц до 1500 Γ Γ ц; пределы допускаемой относительной погрешности 5 \cdot 10 $^{-7}$;
- микровольтметр B3-59 (Госреестр № 8984-83); диапазон измерения напряжений от 0.265 мB до 300 B; пределы основной погрешности $\pm 0.4 \text{ %}$;
- микровольтметр селективный B6-10 (Госреестр № 6218-77); диапазон измерения напряжений от 1 мкВ до 1 В; пределы допускаемой относительной погрешности \pm 6 %;
- осциллограф двухканальный цифровой запоминающий C8-36 (Госреестр N_2 22632-08); погрешность коэффициента отклонения \pm 2,5 %, погрешность коэффициента развертки \pm 1,5 %;
- измеритель коэффициента амплитудной модуляции C2-23 (Госреестр № 6083-77); пределы измерения коэффициента AM от 0,01 до 400 МГц; погрешность измерения коэффициента AM \pm (1,5 \cdot 10⁻² \cdot M +0,2).

Сведения о методиках (методах) измерений

Генератор сигналов Г4-221. Руководство по эксплуатации. УШЯИ.468759.022 РЭ. Генератор сигналов Г4-221/1. Руководство по эксплуатации. УШЯИ.468759.023 РЭ.

Нормативные и технические документы, устанавливающие требования к генераторам сигналов Г4-221, Г4-221/1

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ 15150-69 «Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды»;

ГОСТ 12.2.091-2002 «Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования»;

ТУ ВУ 100039847.074-2006 «генераторы сигналов $\Gamma 4-221$, $\Gamma 4-221/1$. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

При выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством $P\Phi$ обязательным требованиям.

Изготовитель

Открытое акционерное общество «Минский научно-исследовательский приборостроительный институт» (ОАО «МНИПИ»)

Адрес: 220113, Республика Беларусь, г. Минск, ул. Я. Коласа, 73

Тел/факс: (017) 262-21-24/262-88-81 e-mail: oaomnipi@mail.belpak.by

http://www.mnipi.by

Экспертиза проведена

Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Φ ГУП «ВНИИ Φ ТРИ»).

Юридический адрес: 141570, Московская область, Солнечногорский р-н, городское поселение Менделеево, Главный лабораторный корпус.

Почтовый адрес: 141570, Московская область, Солнечногорский р-н, п/о Менделеево.

Телефон: +7(495)526-63-00, факс: +7(495)526-63-00.

E-mail: office@vniiftri.ru.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		Ф.В. Булыгин
	«»	2014 г.
М.п.		