ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики пара вихревые Метран-332

Назначение средства измерений

Счетчики пара вихревые Метран-332 (далее - счетчики) предназначены для измерения количества пара, тепловой энергии и тепловой мощности, переносимой с паром, на тепловых пунктах промышленных предприятий и организаций и объектов коммунально-бытового назначения, имеющих системы парового теплоснабжения без возврата конденсата.

Описание средства измерений

Принцип действия счетчиков основан на измерении расхода, температуры, избыточного давления пара и последующем вычислении по этим параметрам количества (объема и массы) пара, тепловой энергии, переносимой с паром, согласно МИ 2451-98 и тепловой мощности.

Каждый счетчик состоит из датчика многопараметрического Метран-336 (далее - датчик) и устройства микровычислительного Метран-334 (далее - вычислитель).

Измерение расхода производится вихревым преобразователем расхода датчика с последующим преобразованием измерительного сигнала в цифровой код и передачей кода в вычислитель.

Измерение температуры производится платиновым термопреобразователем сопротивления датчика с последующим преобразованием измерительного сигнала в цифровой код и передачей в вычислитель.

Измерение давления производится тензорезистивным преобразователем давления датчика с последующим преобразованием измерительного сигнала в цифровой код и передачей кода в вычислитель.

Вычислитель обеспечивает выполнение следующих функций:

- 1) питание датчиков постоянным током нестабилизированного напряжения 24 В, гальванически развязанного от остальных цепей вычислителя;
 - 2) измерение, вычисление и вывод информации на табло в соответствии с таблицей 2;
- 3) кодовую защиту от несанкционированного доступа к установочным и градуировочным параметрам;
- 4) сигнализацию сбоя в работе с индикацией выхода за пределы диапазона расходов, температур и давлений и отсутствие сигнала от датчиков;
- 5) автоматическое тестирование технического состояния счетчиков при включении питания и перезапуске;
- 6) сохранение накопленной информации в течение не менее пяти лет, в т.ч. и при перерывах в электроснабжении;
- 7) передачу измерительной информации на печатающее устройство (далее принтер), а также на внешний интерфейс RS232C или RS485 по протоколам DYMETIC и Modbus RTU.

Измеряемая среда - пар водяной насыщенный (со степенью сухости от 1,0 до 0,7) или перегретый, находящийся при температуре от плюс 100 °C до плюс 200 °C и избыточном давлении от $8\cdot10^{-4}$ до 1,6 МПа.

Конструктивно датчик представляет собой моноблок, электронная схема которого размещена в отдельной полости, соединенной с корпусом датчика специальной штангой. Датчик обеспечивает передачу в вычислитель кодированной информации о расходе (объеме), температуре и избыточном давлении измеряемой среды, формируемой с помощью измерительных преобразователей, расположенных в полости датчика.

Вычислитель выполнен в настенном исполнении. На передней панели расположены органы управления, отсчетное устройство (матричный жидкокристаллический индикатор) и световые индикаторы аварии и включения питания. В нижней части корпуса расположены

клеммные соединители для подключения питания и кабеля связи с датчиком, над которыми расположен разъем для подключения принтера или модема.

В качестве принтера может использоваться любое EPSON - совместимое цифропечатающее устройство с последовательным интерфейсом типа RS232C.

Внешний вид счетчика с местами пломбирования для предотвращения несанкционированных настройки и вмешательства, которые могут привести к искажениям результатов измерений, представлен на рисунке 1.

Рисунок 1 – Общий вид счетчика

Программное обеспечение

Счетчики имеют встроенное программное обеспечение (далее – ПО), не изменяемое и не считываемое. Идентификационные данные ПО приведены в таблице 1. Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Таблица 1 – Идентификационные данные ПО

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентификаци- онный номер) ПО	110 (контрольная	Алгоритм вы- числения цифро- вого идентифи- катора ПО
ПО МВУ	MVU_M334.hex	Не ниже V1.0–13	-	-

Метрологические и технические характеристикиТаблица 2 — Метрологические и технические характеристики

<u> 1 аолица 2 — Метрологические и технические</u>	характеристики	
Наименование характеристики	Значение параметра	
Условный проход датчика (D _y), мм	32, 50, 80, 100, 150	
Диапазоны измеряемых расходов, $M^3/4$, для D_v :		
32 MM	от 5 до 160;	
50 мм	от 13 до 520;	
80 мм	от 37,5 до 1500;	
100 мм	от 60 до 2400;	
150 мм	от 130 до 5200;	
Диапазон измеряемых температур, °С	от 100 до 200	
Диапазон измеряемых избыточных давлений, P, МПа	от 8⋅10 ⁻⁴ до 1,6	
Пределы допускаемой основной относительной	. 1.5	
погрешности измерения объема и расхода, %	± 1,5	
Пределы допускаемой основной абсолютной по-		
грешности измерения температуры, °С	$\pm 0,5$	
Пределы допускаемой основной абсолютной по-		
грешности измерения давления Р, МПа	$\pm 0.008 \cdot (P + 0.1)$	
Пределы допускаемой основной относительной		
погрешности измерения массы счетчиком, %	± 2,5	
Пределы допускаемой основной относительной		
погрешности преобразования кодовых сигналов		
датчика в показания объема, расхода, температу-	$\pm 0,1$	
ры и давления на цифровом табло вычислителя, %		
Пределы допускаемой основной относительной		
погрешности измерения тепловой энергии и теп-	± 2,5	
ловой мощности счетчиком, %	± 2,3	
Пределы допускаемой основной относительной	$\pm 0,01$	
погрешности измерения времени, %	- 7 -	
Температура окружающего воздуха, °С:		
- для датчиков	от минус 40 до плюс 50;	
- для вычислителей	от плюс 5 до плюс 50	
Степень защиты от пыли и воды:		
- для датчиков	IP57;	
- для вычислителей	IP20.	
Устойчивость к воздействию синусоидальной		
вибрации:		
- для датчиков	N1;	
- для вычислителей	L3.	
Питание - сеть переменного тока 50 Гц напряже-	от 176 до 242	
нием, В		
Потребляемая мощность, В.А, не более	17	
Наработка на отказ, ч, не менее:		
- датчика	50000	
- вычислителя	50000	
Средний срок службы, лет, не менее	12	

Знак утверждения типа

наносится на лицевую панель вычислителя методом сеткографии, на титульные листы паспорта счетчика и руководства по эксплуатации датчика и вычислителя - типографским способом.

Комплектность средства измерений

Комплектность счетчика представлена в таблице 3.

Таблица 3 – Комплектность счетчика

Обозначение	Наименование	
	Устройство микровычислительное "МЕТРАН-334" с комплектом монтажных частей	1 шт.
	Датчик многопараметрический "МЕТРАН-336" с комплектом монтажных частей	1 шт.
СПГК.5158.000.00 ПС	Счетчики пара вихревые "МЕТРАН-332". Паспорт	1 экз.
СПГК.5159.000.00 РЭ	Устройство микровычислительное "МЕТРАН-334". Руководство по эксплуатации	1 экз.
СПГК.5160.000.00 РЭ	Датчик многопараметрический "МЕТРАН-336". Руководство по эксплуатации	1 экз.
СПГК.5158.000.00 МП	Счетчики пара вихревые "МЕТРАН-332". Методика поверки	1 экз.

Поверка

производится в соответствии с документом СПГК.5158.000.00 МП «Счетчики пара вихревые «МЕТРАН-332». Методика поверки», утвержденным ГЦИ СИ ФГУ «Челябинский ЦСМ» $21.05.2009~\Gamma$.

В перечень основного оборудования для поверки входят:

- поверочная установка с относительной погрешностью измерения объема воздуха не более \pm 0,33 %, обеспечивающая расходы воздуха от Q_{min} до Q_{max} для каждого из типоразмеров счетчика;
- образцовые стеклянные термометры ТЛ-4 2 разряда с ценой деления 0,1 °C и пределами измерений от 100 °C до 150 °C и от 150 °C до 200 °C;
 - термостат, воспроизводящий температуру в диапазоне от 100 °C до 200 °C;
 - имитатор сигналов датчиков «DYMETIC-2712И»;
- датчик избыточного давления с приведенной погрешностью не более $\pm\,0.25\,$ % с верхними пределами измерений 1,0 и 1,6 МПа.

Сведения о методиках (методах) измерений

содержатся в документе СПГК.5159.000.00 РЭ «Устройство микровычислительное «МЕТ-РАН-334». Руководство по эксплуатации» и в СПГК.5160.000.00 РЭ «Датчик многопараметрический «МЕТРАН-336». Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к счетчикам пара вихревым Метран-332

Постановление Правительства РФ от 18.11.2013 г. №1034 «О коммерческом учете тепловой энергии, теплоносителя».

МИ 2451-98 «ГСИ. Паровые системы теплоснабжения. Уравнения измерений тепловой энергии и количества теплоносителя».

Технические условия ТУ 4213-036-12580824-2001 «Счетчики пара вихревые «МЕТРАН-332».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Закрытое акционерное общество «Промышленная группа «Метран» (ЗАО «ПГ «Метран»).

Адрес: 454112 Россия, г. Челябинск, Комсомольский проспект, 29.

Телефон (351) 799-51-51, факс (351) 247-16-67 www.metran.ru, e-mail: info.Metran@Emerson.com

Испытательный центр

Государственный центр испытаний средств измерений ФБУ «Челябинский ЦСМ».

Адрес: 454048, Россия, г. Челябинск, ул. Энгельса, 101

Телефон, факс (351) 232-04-01 e-mail: stand@chel.surnet.ru

Аттестат аккредитации ГЦИ СИ ФБУ «Челябинский ЦСМ» по проведению испытаний

средств измерений в целях утверждения типа № 30059-10 от 05.05.2010 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			Ф.В. Булыгин
	М.п.	« »	2014 г.