Приложение к приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2411

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы хроматографические газовые «Хромос ГХ-1000»

Назначение средства измерений

Комплексы хроматографические газовые «Хромос ГХ-1000» (далее - хроматографы) предназначены для качественного и количественного анализа органических и неорганических газообразных, жидких и некоторых твёрдых проб различных объектов природного и промышленного происхождения.

Описание средства измерений

Хроматограф выполнен в виде моноблока и содержит следующие основные составные части:

- термостат колонок;
- устройства ввода пробы;
- дополнительные устройства;
- детекторы для регистрации определяемых компонентов.
- источник питания (трансформатор), обеспечивающий необходимыми питающими напряжениями составные части хроматографа;
- центральная плата управления (далее ЦПУ), обеспечивающая: связь хроматографа через программное обеспечение с персональным компьютером (ПК) через интерфейсы RS-232, USB, Ehternet; управление системами автоматического регулирования температуры в термостатируемых зонах; управление регуляторами расхода и давления газов, усилителями и другими дополнительными устройствами; контроль исправности устройств хроматографа;
 - платы усилителей и питания для детекторов;
- электронные регуляторы потоков газа-носителя, водорода и воздуха, обеспечивающие измерения, формирование необходимых расходов и давлений газов в восьми различных режимах;
 - фильтры для очистки газов, питающих хроматограф;
- панель управления (ПУ), обеспечивающая вывод информации о параметрах работы хроматографа, запуск и остановку анализа.

Детектирование осуществляется сменными детекторами следующих типов:

- 1. Пламенно-ионизационный детектор (ПИД).
- 2. Пламенно-ионизационный детектор повышенной чувствительности (ПИД).
- 3. Детектор по теплопроводности проточный (ДТП).
- 4. Детектор по теплопроводности проточный, повышенной чувствительности (ДТП).
- 5. Детектор по теплопроводности полудиффузионный (ДТП).
- 6. Детектор по теплопроводности микрообъемный (микро-ДТП).
- 7. Детектор по теплопроводности микрообъемный «Valco» (микро-ДТП «Valco»).
- 8. Термоионный детектор (ТИД).
- 9. Электронно-захватный детектор (ЭЗД).
- 10. Пламенно-фотометрический (ПФД-S).
- 11. Фото-ионизационный детектор (ФИД).
- 12. Термохимический детектор (ТХД).
- 13. Пульсирующий разрядный детектор (ПРД).

- 14. Пульсирующий пламенно-фотометрический детектор (ППФД).
- 15. Хемилюминесцентный детектор (ХЛД-S).
- 16. Плазменно-эмиссионный детектор (ПЭД).
- 17. Масс-спектрометрический детектор (МСД).
- 18. Галоген-селективный детектор (ГСД).

В основу хроматографа положена многопроцессорная модульная схема. Каждый модуль оснащен микропроцессором, в котором хранятся рабочие настройки. Модули хроматографа и центральный процессор объединены во внутреннюю информационную сеть, обмен информацией и управление модулями производится по цифровой шине. Неизменность протокола обмена ПО нижнего уровня обеспечивает взаимозаменяемость модулей прибора разных лет выпуска. Наличие датчиков расхода и давления в регуляторах газовых потоков и индикаторов состояния электронных модулей позволяет получить информацию о состоянии хроматографа, о действиях персонала и диагностировать неисправности без использования дополнительного оборудования. По каждому электронному и газовому модулю идет постоянная регистрация всех рабочих параметров с момента его включения, информация накапливается в специальном журнале, по содержанию которого можно оперативно проанализировать работу любого объекта хроматографа и провести диагностику состояния.

Программное обеспечение имеет функцию сбора, обработки и передачи результатов измерений в системы АСУТП предприятий системы ЛИМС.

Возможно использовать программное обеспечение для управления работой и диагностикой прибора в режиме удаленного доступа с использованием сети интернет.

Рисунок 1 – Общий вид хроматографа газового «Хромос ГХ-1000»

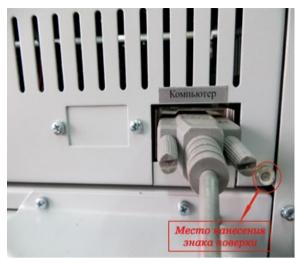


Рисунок 2 – Хроматограф газовый «Хромос ГХ-1000» с обозначением места нанесения знака поверки в виде оттиска поверительного клейма на задней панели.

Программное обеспечение

Для управления работой хроматографа, сбора и обработки хроматографических данных, ведения базы данных по хроматографическим анализам используется программное обеспечение «Хромос».

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений — «высокий» в соответствии с Р 50.2.077-2014.

Метрологические характеристики хроматографа, указанные в таблице 2, нормированы с учетом программного обеспечения.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Наименование программного обеспечения	Хромос
Идентификационное наименование	
программного обеспечения	CalcModule.dll
Номер версии (идентификационный номер)	
программного обеспечения	1.2
Цифровой идентификатор программного	
обеспечения (контрольная сумма	
исполняемого кода)	37c2b7ab
Алгоритм вычисления цифрового	
идентификатора программного кода	CRC-32

Влияние программного обеспечения на метрологические характеристики отсутствует.

Для удаленной диагностики хроматографа в программном обеспечении «Хромос» предусмотрен журнал событий. Журнал событий пополняется информацией о следующих параметрах: входные и выходные давления газов, заданные и текущие температуры, напряжения сети, ошибки в работе прибора и другие параметры.

Метрологические и технические характеристики

Метрологические характеристики приведены в таблице 2.

Таблица 2 — Пределы допускаемого значения относительного среднего квадратического отклонения (ОСКО) выходного сигнала (площади, времени удерживания) в изотермическом режиме при ручном и автоматическом дозировании

Наименование характеристики	Значение	
ОСКО по времени удерживания при автоматическом дозировании, %, не более:		
ПИД, ПИД повышенной чувствительности, ЭЗД, МСД	0,1	
ДТП	1	

ОСКО по площади пика при при автоматическом дозировании, %, не более: *Продолжение таблицы 2*

Наименование характеристики	Значение
ПИД (колонка насадочная/колонка капиллярная)	1
ПИД повышенной чувствительности капиллярная колонка	1
ЭЗД	1
МСД	4
ОСКО по времени удерживания при ручном дозировании, %, не более:	
ПИД, ПИД повышенной чувствительности, ДТП проточный, ДТП	1
проточный, повышенной чувствительности, ДТП полудиффузионный, ДТП	
микрообъемный, ДТП микрообъемный «Valco», ТИД, ЭЗД, ПФД-S, ФИД	
(лампа КрРВ), ПРД, ТХД, ХЛД-Ѕ, ППФД, ПЭД, МСД, ГСД	
ОСКО по площадь пика при ручном дозировании, %, не более:	
ПИД (колонка насадочная/колонка капиллярная)	2/4
ПИД повышенной чувствительности (колонка насадочная/колонка	2/4
капиллярная)	
ДТП проточный (газовый кран/жидкость в испаритель)	1/2
ДТП проточный, повышенной чувствительности (газовый кран/жидкость в	1/2
испаритель)	
ДТП полудиффузионный, ДТП микрообъемный, ДТП микрообъемный	1
«Valco», ПРД, ТХД, ПЭД	
ТИД, ЭЗД, ФИД (лампа КрРВ)	4
ПФД-S (газовый кран/газ в испаритель/жидкость в испаритель)	3/8/5
ХЛД-Ѕ, ППФД	6
МСД, ГСД	5

Таблица 3-Дополнительные метрологические характеристики

Наименование характеристики	Значение	
Пределы допускаемого значения относительного изменения выходного сигнала (площадей		
пиков) за 48 часов непрерывной работы, %, не более:	T	
ПИД, ДТП, ПРД	± 5	
ТИД, ЭЗД, ФИД, ПФД-Ѕ, ТХД, ХЛД-Ѕ, ППФД, ПЭД, ГСД	± 10	
Относительное среднее квадратическое отклонение (ОСКО) выходного	± 5	
сигнала (время удерживания, площадь пика) за 8 часов непрерывной		
работы для МСД, %, не более:		
Уровень флуктуационных шумов нулевого сигнала детекторов, не более:		
ПИД, А	1,0.10-14	
ПИД повышенной чувствительности, А	1,0.10-14	
ДТП проточный (г-н гелий), В	8,0.10-8	
ДТП проточный (г-н аргон), В	1,5·10 ⁻⁷	
ДТП проточный, повышенной чувствительности (г-н гелий), В	$1,5 \cdot 10^{-7}$	
ДТП проточный, повышенной чувствительности	$1,5 \cdot 10^{-7}$	
(г-н аргон), В	1,5 10	
ДТП полудиффузионный, В	8,0.10-8	
ДТП микрообъемный (г-н гелий), В	8,0.10-8	
ДТП микрообъемный (г-н аргон), В	1,5·10 ⁻⁷	
ДТП микрообъемный «Valco», В	8,0.10-8	
ТИД, А	$2,0\cdot 10^{-14}$	
ЭЗД, А	$2,0\cdot 10^{-14}$	
ПФД-S, A	2,6·10 ⁻¹²	

фиц (помпо Кърр) А	2,0.10-14
ФИД (лампа КрРВ), А Продолжение таблицы 3	2,0.10
Наименование характеристики	Значение
ПРД, В	1,0.10-4
ТХД,В	1,0.10-5
ХЛД-Ѕ, А	$2,5 \cdot 10^{-12}$
ППФД, А	$2,5 \cdot 10^{-12}$
ПЭД, В	$1,0\cdot 10^{-4}$
ГСД, А	$2,0\cdot 10^{-14}$
Уровень дрейфа нулевого сигнала детекторов, не более:	2,0 10
ПИД, А/ч	4,0.10-13
ПИД повышенной чувствительности, А/ч	4,0.10-13
ДТП проточный (г-н гелий), В/ч	1,0.10-5
ДТП проточный (г-н аргон), В/ч	1,0.10-4
ДТП проточный, повышенной чувствительности (г-н гелий), В/ч	1,0.10-4
ДТП проточный, повышенной чувствительности	1,0.10-4
(г-н аргон), В/ч	<i>y</i> = -
ДТП полудиффузионный, В/ч	1,0.10-5
ДТП микрообъемный (г-н гелий), В/ч	1,0.10-5
ДТП микрообъемный (г-н аргон), В/ч	1,0.10-4
ДТП микрообъемный «Valco», В/ч	1,0.10-5
ТИД, А/ч	1,0.10-12
ЭЗД, А/ч	5,0.10-13
ПФД-S, А/ч	1,0.10-11
ФИД (лампа КрРВ), А/ч	5,0.10-12
ПРД, В/ч	10.10-3
ТХД, В/ч	5,0.10-4
ХЛД-Ѕ, А/ч	1,0.10-11
ППФД, А/ч	1,0.10-11
ПЭД, В/ч	10·10 ⁻³
ГСД, А/ч	1,0.10-12
Пределы детектирования детекторов, не более:	
ПИД, по гептану или пропану, гС/с	$1,3 \cdot 10^{-12}$
ПИД повышенной чувствительности по гептану или пропану, гС/с	$1,0\cdot 10^{-12}$
ДТП проточный, по гептану или пропану, г/см ³ , газ-носитель гелий	8,0.10-10
ДТП проточный, по водороду, г/см ³ , газ-носитель аргон	$1,0\cdot 10^{-10}$
ДТП проточный, повышенной чувствительности, по гептану или пропану,	3,5·10 ⁻¹⁰
г/см ³ , газ-носитель гелий	
ДТП проточный, повышенной чувствительности, по водороду, г/см ³ ,	8,0.10-11
газ-носитель аргон	11
ДТП полудиффузионный, по водороду, г/см ³ , газ-носитель аргон	$8,0\cdot10^{-11} \\ 1,0\cdot10^{-9} \\ 7,0\cdot10^{-10}$
ДТП микрообъемный, по гептану или пропану, г/см ³ , газ-носитель гелий	1,0.10-9
ДТП микрообъемный, по водороду, г/см ³ , газ-носитель аргон	$7,0\cdot 10^{-10}$
ДТП микрообъемный «Valco», по гептану или пропану, г/см ³ ,	5,0.10-9
газ-носитель гелий	1 0 10-14
ТИД, по фосфору в метафосе с ацетоном, гР/с	1,8·10 ⁻¹⁴
ЭЗД, по линдану в гексане, г/с	1,7·10 ⁻¹⁴
ПФД-S, по сере в метафосе, гS/с	$1,0\cdot 10^{-12}$
ПФД-S, по сероводороду в азоте, г/с	1,0.10-13
ПФД-S, по сероводороду в метане, г/с	$8,0\cdot 10^{-13}$

ФИД (лампа КрРВ), по	бензолу, г/с	$2,0\cdot 10^{-13}$
;		

Наименование характеристики	Значение
ПРД, по метану в гелии, г/с	$2,2\cdot 10^{-13}$
ТХД, по водороду, г/см3	5,0.10-11
по кислороду, г/см3	$5,0\cdot10^{-10}$
ХЛД-Ѕ, по сере, гЅ/с	$5,0\cdot 10^{-13}$
ППФД, по сере, гS/с	2,0.10-12
ПЭД, по азоту, г/см3	5,0.10-11
по водороду, кислороду, метану, г/см3	$1,0\cdot 10^{-11}$
ГСД, по линдану в гексане, по дихлорметану, хлороформу, дихлорэтану,	$2,0\cdot 10^{-12}$
четыреххлористому углероду, трихлорэтилену, тетрахлорэтилену, г/с	

Таблица 3а - Соотношение сигнал/шум и предельное допускаемое значение относительного изменения выходного сигнала за цикл измерений 8 часов (для детектора МСД).

Детектор	Контрольное вещество	Соотношение сигнал/шум	Предельное допускаемое значение относительного изменения выходного сигнала за цикл измерений 8 часов (по площадям пиков), %
МСД	Гексахлорбензол (0,01 мкг/см ³)	150:1 (по m\z 283,8)	5

Таблица 4- Основные технические характеристики

Наименование характеристики	Значение
- температура термостата колонок, °С	от (Токр +2) до +450
- с системой охлаждения термостата колонок, °С	от -20 до +450
- с устройством криогенного охлаждения, °С	от -100 до +450
- температура термостатируемых зон, °С	от (Токр +4) до +450
Максимальная температура испарителей, °С	+450
Максимальная температура кранов, °С	+350
Максимальная температура детекторов, °С:	+450
Дискретность задания температур во всех зонах, °С	0,01
Максимальная скорость программирования температуры в	
термостате колонок, °С/мин*	140
Дискретность задания скорости программирования, °С	0,01
Отклонение среднего установившегося значения температуры	
термостатов от заданного значения, %	$\pm 0,15$
Питание хроматографа: **	
- напряжение переменного тока, В	230±23
- частота переменного тока, Гц	50±0,2
Мощность, потребляемая хроматографом (без дополнительных	
устройств), кВ·А, не более:	2,5
- при выходе на режим в установившемся режиме	0,9
Наименование характеристики	Значение
Габаритные размеры аналитического блока без дополнительных	
устройств и упаковки (ширина х глубина х высота), мм, не более	390x570x480
Масса хроматографа (без дополнительных устройств, упаковки),	42

кг, не более	

Наименование характеристики	Значение
Наработка на отказ с учетом технического обслуживания,	
регламентируемого руководством по эксплуатации (без	
дополнительных устройств), ч, не менее	3000
Средний срок службы, лет, не менее	8
Условия эксплуатации хроматографа:	
- температура окружающей среды, °С	+10 до +35
- относительная влажность воздуха, %	от 30 до 80
- атмосферное давление, кПа	от 84 до 106,7

Хроматографы изготавливаются с термостатами объемом 18,9 л; 14,2 л; 5,3 л.

Знак утверждения типа

наносится методом сетчатой печати на шильд, расположенный на задней панели хроматографа. На титульные листы эксплуатационной документации знак утверждения типа наносится методом лазерной печати.

Комплектность средства измерений

Таблица 5-Комплектность средства измерений

Наименование	Обозначение	Количество
Комплекс хроматографический газовый «Хромос ГХ-1000»	XAC 2.320.003	1
Паспорт на комплекс хроматографический газовый «Хромос ГХ-1000»	ХАС 2.320.003 ПС	1
Руководство по эксплуатации на комплекс хроматографический газовый «Хромос ГХ-1000»	XAC 2.320.003 PЭ	1
Методика поверки	XAC 2.320.003.01 МП с изменением № 1	1
Руководство пользователя программой «Хромос»	ХАС 3.001.001 РП	1
Программное обеспечение «Хромос» на компакт- диске	XAC 3.001.001	1
Паспорт на источник бета-излучения закрытый (на основе радионуклида Никель-63)	-	При нали- чии в ком- плекте ЭЗД
Комплект ЗИП	-	1
Упаковка	-	1
Составные части хроматографа: Детектор ПИД Детектор ПИД, повышенной чувствительности Детектор ПИД с метанатором Детектор ДТП проточный Детектор ДТП проточный, повышенной чувствительности Детектор ДТП полудиффузионный Детектор ДТП микрообъемный Детектор ДТП микрообъемный	-	

^{*} Для термостатов объемом 5,3 л.

^{**}Гарантируется нормальная эксплуатация хроматографа при значениях напряжения электрической сети от 187 до 253 В и частоте (50±1) Гц.

Детектор ТИД	
Детектор ЭЗД	

Наименование	Обозначение	Количество
Детектор ПФД-S		
Детектор ФИД		
Детектор ТХД		
Детектор ПРД		
Детектор ХЛД-S		
Детектор ППФД		
Детектор ПЭД		
Детектор МСД		
Детектор ГСД		
Устройства для ввода проб:	_	
Испаритель насадочный		
Испаритель капиллярный		
Испаритель программируемый		
Кран 3-х портовый газовый		
Кран 4-х портовый газовый		
Кран 6-ти портовый газовый		
Кран 8-ми портовый газовый		
Кран 10-ти портовый газовый		
Кран 14-ти портовый газовый		
Краны для ввода жидких проб (с исполнениями)		
Термодесорбер (ТД)		
Дозатор равновесного пара (ДРП)		
Устройство дозирования сжиженных газов		
(УДСГ)		
Дозатор проб высокого давления		
Дополнительные устройства:	-	
Клапан электромагнитный		
Клапан пневматический		
Устройство для контроля водорода		
Система криоконцентрирования		
Модуль переключения капиллярных колонок		
Метанатор		
Устройство для отбора газовых проб шприцем		
Устройство для анализа трансформаторного масла		
Устройство для достижения равновесия		
Система охлаждения термостата колонок		
Устройство криогенного охлаждения термостата		
колонок		
Аппаратно-программный модуль «Хромос АПМ-		
2M»		
Дозатор автоматический жидкостный		
Дозатор автоматический парофазный		
Дозатор автоматический, с функцией дозирования		
жидкости, равновесного пара и твердофазной экс-		
тракции		
Индикатор расхода газа		
Блок регулирования давления газов		
Блок регулирования расхода газов		

Разветвители газовых потоков	

Продолжение таблицы 5		TC
Наименование	Обозначение	Количество
Концентраторы		
Реактор сжигания кислорода		
Блок регенерации колонок		
Блок коммутации и подготовки газов		
Узлы сброса		
Устройство для разгазирования		
Стабилизатор давления механический		
Трубопровод обогреваемый		
Устройство запорное		
Термостаты дополнительные		
Фильтры дополнительной очистки газов		
Блок фильтров выносной		
Блоки фильтров со стабилизаторами давления		
Фильтры для улавливания механических частиц		
Дополнительное оборудование:		Наличие
Шприцы для жидких и газовых проб		указывает-
Компрессор воздуха		ся в
Генератор водорода		упаковоч-
Генератор чистого азота		ном листе
Система водоподготовки		HOW SINCIC
Деионизатор воды		
Устройство для регенерации фильтров		
Детекторы поиска утечек газов		
Регуляторы давления высокой чистоты		
Дроссель механический		
Вентили тонкой регулировки		
Система экстрагирования		
Система разгазирования проб		
Устройство для подогрева баллонов		
±		
Счетчики газовые		
Пробоотборники		
Колонки адсорбционные		
Колонки насадочные стеклянные		
Колонки насадочные металлические		
Колонки капиллярные		
Газовая арматура в комплекте		
Персональный компьютер		
Принтер		
Операционная система (лицензированная)		
Многофункциональное устройство		
Источник бесперебойного питания		
Баллоны с аттестованными газовыми и жидкими	-	
смесями		
Баллоны с газами		
Стандартные образцы		
Чистые вещества		

Примечание:

Комплект поставки определяется заказом потребителя, исходя из аналитических задач.

По заказу потребителя в хроматограф может быть установлено до 4-х детекторов.

Поверка

осуществляется по документу XAC 2.320.003.01 МП с измменением № 1 «Комплекс хроматографический газовый «Хромос ГХ-1000». Методика поверки», утвержденной ФБУ «Нижегородский ЦСМ» 27.11.2020.

Таблица 6 - Основные средства поверки

Таолица 6 - Основные средства поверки			
Наименование	Регистрационный номер	Метрологические характеристики	
Микрошприц типа Агат-М-10, объем доз от 1 до 10 мкл	per.№ 54826-13	Погрешность ±3 %	
Микрошприц типа МШ-10М, объем доз от 1 до 10 мкл	рег.№ 8235-81	Погрешность ±5 %	
Шприц Hamilton серии 700	рег.№ 63779-16	Относительная погрешность ±5 %	
Шприц Hamilton серии 1000	рег.№ 63779-16	Относительная погрешность ±1 %	
Шприц Hamilton серии 7000	рег.№ 63779-16	Относительная погрешность ±8 %	
Стандартный образец состава искусственной газовой смеси пропан-азот	ГСО 10651-2015	Объемная доля пропана от 0,1 до 0,5 % об.д.	
Стандартный образец состава искусственной газовой смеси пропан-гелий	ГСО 10655-2015	Объемная доля пропана от 0,1 до 0,5 % об.д.	
Стандартный образец состава искусственной газовой смеси метан – гелий	ГСО 10532-2014	Объемная доля метана от 5 до 10 млн1	
Стандартный образец состава искусственной газовой смеси сероводород-азот	ГСО 10537-2014	Массовая концентрация сероводорода от 9 до 25 мг/м ³	
Стандартный образец состава искусственной газовой смеси сероводород-метан	ГСО 10538-2014	Массовая концентрация сероводорода от 4 до 20 мг/м ³	
Стандартный образец состава искусственной газовой смеси водород-азот	ГСО 10532-2014	Объемная доля водорода от 0,6 до 1,0 % об.д.	
Стандартный образец состава искусственной газовой смеси водород, кислород, азот, метан- аргон	ГСО 10532-2014	Объемная доля азота от 5 до 15 млн ⁻¹ , объемная доля водорода от 5 до 15 млн ⁻¹ , объемная доля кислорода от 5 до 15 млн ⁻¹ , объемная доля метана от 5 до 15 млн ⁻¹	

Стандартный образец состава	ГСО 10611-2015	Массовая доля кислорода,
искусственной газовой смеси		водорода от 0,01 до 0,03 %
кислород, водород- аргон		

Наименование	Регистрационный номер	Метрологические характеристики
Стандартный образец состава искусственной газовой смеси дихлорметан, хлороформ, дихлорэтан, четыреххлористый углерод, трихлорэтилен, тетрахлорэтилен в азоте	ГСО 10550-2014	Массовая концентрация дихлорметана от 0,3 до 30 мг/м ³ , хлороформа от 0,3 до 30 мг/м ³ , дихлорэтана от 0,3 до 30 мг/м ³ , четыреххлористого углерода от 0,3 до 30 мг/м ³ , трихлорэтилена от 0,3 до 30 мг/м ³ , тетрахлорэтилена от 0,3 до 30 мг/м ³ ,
Гептан эталонный	ГОСТ 25828-83	Массовая доля основного вещества не менее 99 %
Линдан	ГСО 8890-2007	Массовая доля основного вещества не менее 98,7 %
Метафос (паратион-метил)	ГСО 11056-2018	Массовая концентрация метафоса 113 мг/дм ³
Бензол х.ч.	ГСО 7141-95	Массовая доля основного вещества не менее 99,4 %
Гексахлорбензол	ГСО 9106-2008	Массовая доля основного вещества не менее 99,6 %
Изооктан	ТУ 6-09-921-76	Массовая доля изооктана не менее 99,9 %
Весы лабораторные электронные ME 235 S.	рег.№ 21464-07	Погрешность ±(0,00002-0,00024) г

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в свидетельство о поверке в виде оттиска поверительного клейма, а также на крепежный винт задней дверки.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к комплексам хроматографическим газовым «Хромос ГХ-1000»

ГОСТ 26703–93 Хроматографы аналитические газовые. Общие технические требования и методы испытаний.

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ТУ 4215-003-69502896-19 с изменением 1 Комплекс хроматографический газовый

Изготовитель

Общество с ограниченной ответственностью «ХРОМОС Инжиниринг» (ООО «ХРОМОС Инжиниринг»

ИНН 5249111131

Адрес: 606002, Нижегородская обл., г. Дзержинск, ул. Лермонтова, д. 20, стр. 83

Тел./факс: (8313) 249-200, 249-300, 348-255

E-mail: mail@has.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Нижегородской области»

Адрес: 603950 г. Нижний Новгород, ул. Республиканская, д. 1

Тел./факс:8-800-200-22-14 E-mail: mail@nncsm.гu

Регистрационный номер в реестре аккредитованных лиц в области обеспечения единства измерения N = 30011-13.