ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы проточно-инжекционные FIMS модификации FIMS-100 и FIMS-400

Назначение средства измерений

Системы проточно-инжекционные FIMS модификации FIMS-100 и FIMS-400 (далее по тексту - системы FIMS) предназначены для измерения концентрации ртути в водных растворах.

Описание средства измерений

Принцип действия систем FIMS основан на измерении поглощения излучения с длиной волны 253,7 нм атомным паром ртути. Атомный пар образуется при восстановлении ртути атомарным водородом, образующимся при разложении боргидрида (NaBH₄) натрия в кислой среде (раствор соляной кислоты) или хлористым оловом (SnCl₂) кислой среде (раствор соляной кислоты).

Конструктивно системы FIMS выполнены в моноблочном настольном исполнении и состоят из следующих основных систем:

- оптическая система, включающая источник излучения (ртутная лампа низкого давления), подогреваемую проточную измерительную кювету с кварцевыми окнами и фотоэлектронный детектор с максимальной чувствительностью в области 254 нм.
- проточно-инжекционная система, служащая для подачи и смешивания реагентов и пробы и включающая в себя перистальтический насос (для FIMS-400 два насоса), краны-переключатели для ввода пробы в поток кислоты, смесительную камеру, где происходит реакция восстановления ртути и сепаратор для разделения газожидкостной смеси.
- -газовая система, служащая для подачи паров ртути из смесителя через сепаратор в проточную измерительную кювету.

Системы FIMS могут быть укомплектованы автодозатором.

Рисунок 1 - Общий вид Системы проточно-инжекционные FIMS модификации FIMS-100 и FIMS-400

Рисунок 2 - Место нанесения маркировки и место пломбирования Систем проточноинжекционных FIMS модификации FIMS-100 и FIMS-400

Программное обеспечение

Управление процессом измерения и обработки выходной информации в приборах осуществляется через персональный компьютер с помощью специального программного обеспечения AAWinLab32 версии 7.0. Программным образом осуществляется настройка прибора, построение градуировочных зависимостей на основе анализа стандартного образца, оптимизация параметров прибора, управление его работой, обработка информации, печать и сохранение результатов анализа. Во всех частях программы, в которых требуется какой-либо ввод, предусмотрено необходимое установочное значение, принимаемое программой по умолчанию и соответствующее стандартным методикам. Имеется возможность дистанционного управления и/или дистанционной диагностики через компьютерную сеть.

Программное обеспечение является защищённым, при входе в программное обеспечение необходимо ввести логин и пароль. Никакие изменения кода программы невозможны. Обновления программного обеспечения производятся производителем путём выпуска обновлений на дисках и рассылкой пользователям. Программное обеспечение соответствует ISO 9001 и содержит алгоритм расчёта аналита в образце в зависимости от показаний системы, изменить алгоритм может только производитель. Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010. Идентификационные данные (признаки) метрологически значимой части программного обеспечения указаны в таблице 1.

Наименование	Идентификацион-	Номер версии	Цифровой иденти-	Алгоритм
ПО	ное наименование	(идентификаци-	фикатор ПО	вычисления циф-
	ПО	онный номер)	(контрольная сум-	рового иденти-
		ПО	ма исполняемого	фикатора ПО
			кода)	
AAWinLab32	WinLab32	Не ниже 7.0		

Метрологические и технические характеристики

Таблица 2

Наименование характеристики	Значение
ттаименование характеристики	характеристики
Рабочая длина волны, нм	253,7
Диапазон измерения концентрации ртути, мкг/дм ³	от 0,05 до 20
Предел допускаемой относительной погрешности измерения	
концентрации ртути, %	
в диапазоне от 0.05 до 0.2 мкг/дм ³	±30
в диапазоне от 0.2 до 1.0 мкг/дм ³	±20
в диапазоне от 1,0 до $20,0$ мкг/дм ³	±10
Характеристическая концентрация, мкг/дм ³	0,3
Предел обнаружения (по критерию 3σ), мкг/дм ³ , не более	0,01
Напряжение питания переменного тока, В	220 ± 22
Потребляемая мощность, В·А, не более	300
Габаритные размеры, мм, не более	$415 \times 255 \times 410$
Масса, кг, не более	4,9
Условия эксплуатации:	
Температура, °С	от 15 до 35
Относительная влажность, %	от 20 до 85

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации печатным методом и на корпус прибора методом наклеивания.

Комплектность средства измерений

Таблица 3

Наименование	Количество, шт
Система проточно-инжекционная FIMS модификации	1
FIMS-100 или FIMS-400	
Компьютер с принтером*	1
Программное обеспечение AAWinLab 32	1
Автодозатор*	1
Руководство по эксплуатации	1
Методика поверки МП 63.Д4-12	1

^{* -} поставляется по отдельному заказу

Поверка

осуществляется по документу: «Системы проточно-инжекционные FIMS модификации FIMS-100 и FIMS-400. Методика поверки МП 63.Д4-12» утвержденному 28 ноября 2012 г.

Основные средства поверки:

Государственный стандартный образец состава водных растворов ртути ГСО 7440-98.

Сведения о методиках (методах) измерений

«Системы проточно-инжекционные FIMS модификации FIMS-100 и FIMS-400. Руководство по эксплуатации», ч. 2 «Подготовка и выполнение анализа».

Нормативные и технические документы, устанавливающие требования к системам проточно-инжекционным FIMS модификации FIMS-100 и FIMS-400

Техническая документация фирмы «PerkinElmer Inc.», США.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление деятельности в области охраны окружающей среды, выполнение работ по оценке соответствия обязательным требованиям промышленной продукции и продукции других видов, а также иных объектов, установленных законодательством Российской Федерации, для подтверждения соответствия.

Изготовитель

фирма "PerkinElmer Inc.", США 940 Winter Street, Waltham, MA 02451 USA Телефон: +1 (203) 925-4602 или (800) 762-4000 E-mail: CustomerCareUS@perkinelmer.com

www.perkinelmer.com

Заявитель

Московское Представительство АО «ШЕЛТЕК АГ»

119334 г. Москва, Ул. Косыгина, 19

Телефон: .(495) 935-8888 Факс: (495) 546-8787 E-mail: <u>info@scheltec.ru</u>

www.scheltec.ru

Испытательный центр

Государственный центр испытаний средств измерений Федерального Государственного Унитарного Предприятия «Всероссийский научно-исследовательский институт оптикофизических измерений» (ГЦИ СИ ФГУП «ВНИИОФИ»), аттестат аккредитации государственного центра испытаний (испытательной, измерительной лаборатории) средств измерений № 30003-08 от 30.12.2008 г.

Адрес: 119361, Москва, ул. Озерная, 46.

Телефон: (495) 437-56-33; факс: (495) 437-31-47

E-mail: vniiofi@vniiofi.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Б	улыгин
--------	--------

М.п. « » 2013 г.