ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дозиметры лазерные автоматизированные для контроля уровней импульсного и непрерывного излучения «ЛАДИН»

Назначение средства измерений

Дозиметры лазерные автоматизированные для контроля уровней импульсного и непрерывного излучения «ЛАДИН» (далее по тексту - дозиметры) предназначены для измерения энергетических параметров диффузного отражения и рассеянного лазерного излучения и сравнения результатов измерений со значениями предельно допустимых уровней излучения (ПДУ) с целью определения степени опасности излучения для организма человека.

Описание средства измерений

Дозиметры состоят из блока преобразования (БПР) и трех фотоприемных устройств: ФПУ-1, ФПУ-2, ФПУ-3. ФПУ-1 предназначен для измерений в спектральном диапазоне 0,48 - 1,15 мкм; ФПУ_2 - для измерений в спектральном диапазоне 1,15 - 1,8 мкм; ФПУ-3 - для измерений в спектральном диапазоне 2,0 - 11,0 мкм. БПР конструктивно выполнен в виде портативного блока, на лицевой стороне которого расположен дисплей для отображения информации и клавиатура для управления работой дозиметра.

Принцип действия дозиметра основан на высокоточном преобразовании фототока фотодиодов, размещенных в ФПУ-1 и ФПУ-2, и фотонапряжения болометра, размещенного в ФПУ-3, в импульсы напряжения, амплитуда которых пропорциональна облученности от непрерывного излучения или энергетической экспозиции от импульсного лазерного излучения.

Амплитуда импульсов преобразуется в цифровой код, который обрабатывается в микропроцессоре, соединенном с жидкокристаллическим дисплеем. На экране дисплея высвечивается измеренное значение облученности или энергетической экспозиции, а также наибольшее значение измеряемой величины за время дозиметрического контроля. Кроме этого, микропроцессор обеспечивает получение информации о суммарной энергетической экспозиции (дозе) от непрерывного или импульсного излучения, а также о времени воздействия непрерывного излучения или о частоте поступивших импульсов излучения.

Отличительной особенностью дозиметра является его способность наряду с измерениями энергетических параметров лазерного излучения автоматически вычислять их предельно допустимые уровни в соответствии со СНиП № 5804-91 или IEC-60825-1:2007.

Дозиметр работает от сети переменного тока и от автономных источников питания.

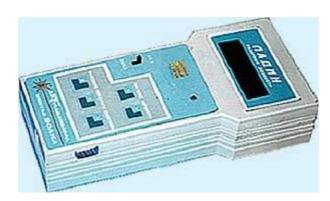


Рисунок 1 - Общий вид дозиметров лазерных автоматизированных для контроля уровней импульсного и непрерывного излучения «ЛАДИН»

Рисунок 2 - Схема пломбирования и маркировки дозиметров лазерных автоматизированных для контроля уровней импульсного и непрерывного излучения «ЛАДИН»

Программное обеспечение

Приемники излучения из состава дозиметра функционируют под управлением микроконтроллера, используется встроенное программное обеспечение (ПО), выполняющее функции отображения на экране прибора информации в удобном для оператора виде, автоматический расчет параметров измеряемого излучения, сохранения результатов измерений в памяти прибора.

Для защиты от несанкционированного доступа к элементам схемы корпус каждого из устройств пломбируется. Пломбируется гнездо правого верхнего винта крепления панелей прибора, если смотреть со стороны задней панели.

Метрологически значимая часть ПО размещается в энергонезависимой части памяти микроконтроллера, запись которой осуществляется в процессе производства. Доступ к микроконтроллеру исключён конструкцией аппаратной части прибора.

Метрологические и технические характеристики

Таблина 2

Наименование характеристики	Значение характеристики
Спектральные диапазон, мкм:	
- спектральный диапазон 1	0,48 - 1,15
- спектральный диапазон 2	1,15 - 1,8
- спектральный диапазон 3	2,0 - 11,0
Рабочие длины волн лазерного излучения, мкм:	
- в спектральном диапазоне 1	0,48; 0,53; 0,63; 0,67; 0,78;
	0,85; 0,92;0,98;1,06
- в спектральном диапазоне 2	1,15; 1,30; 1,54
- в спектральном диапазоне 3	10,6
Диапазоны измерений облученности от непрерывного лазерного	
излучения, Вт/см ² :	
- в спектральном диапазоне 1	$10^{-6} - 10^{-2}$
- в спектральном диапазоне 2	10 ⁻⁵ - 10 ⁻¹
- в спектральном диапазоне 3	10 ⁻³ - 1

Продолжение таблицы 2

Продолжение таблицы 2	n
Наименование характеристики	Значение характеристики
Диапазоны измерений энергетической экспозиции от импульсного	
лазерного излучения, Дж/см ² :	10-8 10-4
- в спектральном диапазоне 1	$10^{-8} - 10^{-4}$
- в спектральном диапазоне 2	10 ⁻⁷ - 10 ⁻³
Диапазоны измерений суммарной энергетической экспозиции за	
время измерения (дозы), Дж/см ² :	9 2
- в спектральном диапазоне 1	$10^{-8} - 10^{2}$
- в спектральном диапазоне 2	$10^{-7} - 10^{-3}$
- на длине волны 10,6 мкм (для непрерывного излучения)	10 ⁻⁵ - 10 ⁴
Диапазон измерений частоты повторения импульсов лазерного из-	0 - 200
лучения, Гц	0 - 200
Диапазон длительностей импульсов лазерного излучения, с	$10^{-8} - 10^{-2}$
Пределы допускаемой основной относительной погрешности	
(ООП) при измерении облученности на длине волны 0,63 мкм, %:	
- при работе с ФПУ-1	±15
- при работе с ФПУ-2	±18
Пределы допускаемой ООП дозиметра при измерении облученно-	_10
сти на других длинах волн, %:	
- при работе с ФПУ-1	±20
- при работе с ФПУ-2	±22
	122
Пределы допускаемой ООП дозиметра при измерении облученно-	±25
сти на длине волны 10,6 мкм, %	
Пределы допускаемой ООП дозиметра при измерении энергетиче-	
ской экспозиции на длине волны 0,63 мкм, %:	10
- при работе с ФПУ-1	±18
- при работе с ФПУ-2	±20
Пределы допускаемой ООП дозиметра при измерении энергетиче-	
ской экспозиции на других длинах волн, %:	
- при работе с ФПУ-1	±20
- при работе с ФПУ-2	±22
Пределы допускаемой ООП дозиметра при измерении суммарной	
энергетической экспозиции на длине волны 0,63 мкм, %:	
- при работе с ФПУ-1	±18
- при работе с ФПУ-2	±20
Пределы допускаемой ООП дозиметра при измерении суммарной	
энергетической экспозиции на других длинах волн, %:	
- при работе с ФПУ-1	±20
- при работе с ФПУ-2	±22
- при работе с ФПУ-3	±25
Коэффициент ослабления преобразователя масштабного сетчатого	100±10
Пределы допускаемой дополнительной относительной погрешно-	100-10
сти (ДОП) дозиметра от изменения температуры окружающей сре-	
ды в диапазоне (10 - 35)°C в режиме измерения облученности, %, на 10°C:	
- на длине волны 0,63 мкм при работе с ФПУ-1	±5
- на длине волны 0,63 мкм при работе с ФПУ-2	±7
- на длине волны 0,03 мкм при работе с ФПУ-2 - на длине волны 0,63 мкм при работе с ФПУ-3	±7 ±7
- на длине волны 0,03 мкм при раобте с ФПУ-3	エ/

Продолжение таблицы 2

Наименование характеристики	Значение характеристики
Пределы допускаемой ДОП дозиметра в режиме измерения облу-	
ченности на длине волны 0,63 мкм от воздействия предельной от-	±15
носительной влажности воздуха 80% при 25°C в течение 1 часа, %	
Предельное время установления рабочего режима, мин	0,6
Время непрерывной работы, ч	8
Напряжение питания, В:	
- при работе от сети переменного тока частотой 50±0,5 Гц	220±22
-при работе от встроенных батарей	6
Габаритные размеры, мм, не более:	
- блок преобразования и регистрации (БПР)	230×106×68
- ФПУ-1, ФПУ-2	80×40×40
- ФПУ-3	125×40×40
Масса, кг, не более:	
- БПР	0,5
- ФПУ-1, ФПУ-2	0,1
- ФПУ-3	0,15
Условия эксплуатации:	
- температура окружающего воздуха, °С	10 - 35
- влажность при температуре от 10 до 35 °C, %, не более	80
- атмосферное давление, кПа	90±15

Знак утверждения типа

наносится на титульные листы паспорта и руководства по эксплуатации печатным методом и на этикетку футляра укладочного.

Комплектность средства измерений

Состав комплекта тестера представлен в таблице 3.

Таблица 3

Наименование	Количество, шт.
Блок преобразования и регистрации БПР	1
Фотоприемное устройство ФПУ-1	1
Фотоприемное устройство ФПУ-2	1
Фотоприемное устройство ФПУ-3	1
Преобразователь масштабный сетчатый ПМС 1	1
Преобразователь масштабный диафрагмирующий ПМД	1
Блок питания от сети переменого тока БП	1
Штатив	1
Руководство по эксплуатации	1
Паспорт	1
Ведомость эксплуатационных документов	1
Футляр укладочный	1

Поверка

осуществляется по документу Р 50.2.025-2002 «Государственная система обеспечения единства измерений. Дозиметры лазерные. Методика поверки»

Основные средства поверки:

1 Лазерный дозиметр

Основные метрологические характеристики:

Диапазон измерений экспозиции от 10^{-8} до $2 \cdot 10^{-6}$ Дж/см²; Диапазон измерений облученности от 10^{-6} до 10^{-4} Дж/см²;

Пределы допускаемой основной относительной погрешности измерения экспозиции и облученности ±10 %.

2 Измеритель средней мощности и энергии лазерного излучения

Основные метрологические характеристики:

Диапазон измерений средней мощности от 10⁻³ до 1 Вт

Пределы допускаемой основной относительной погрешности измерения средней мощно $сти \pm 5 \%$.

Сведения о методиках (методах) измерений

«Дозиметр лазерный автоматизированный для контроля уровней импульсного и непрерывного излучения «ЛАДИН». Руководство по эксплуатации 032.0.00.000.0PЭ», раздел 2.1 «Подготовка дозиметра к использованию» и раздел 2.2 «Использование дозиметра».

Нормативные и технические документы, устанавливающие требования к дозиметрам лазерным автоматизированным для контроля уровней импульсного и непрерывного излучения «ЛАДИН»

- 1 ГОСТ 12.1.031-81 «Система стандартов безопасности труда. Лазеры. Методы дозиметрического контроля лазерного излучения»
- 2 ТУ 50-685-96 «Дозиметр лазерный автоматизированный для контроля уровней импульсного и непрерывного излучения «ЛАДИН». Технические условия»

Изготовитель

Акционерное общество «Акционерная компания «Туламашзавод»

(АО «АК «Туламашзавод»), г. Тула

Адрес: 300002, Россия, г. Тула, ул. Мосина, 2 Телефон: 8(4872)32-10-09; Факс: 8(4872) 56-26-20 E-mail: webmaster@tulamash.ru; www.tulamash.ru

Испытательный центр

Государственный центр испытаний средств измерений федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физических измерений» (ГЦИ СИ ФГУП «ВНИИОФИ»)

Адрес: 119361, Москва, ул. Озерная, 46

Телефон: (495) 437-56-33; факс: (495) 437-31-47; E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИОФИ» по проведению испытаний средств измерений в целях утверждения типа № 30003-04 от 05.04.2004 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев