ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Энергосбытовая компания «Горкунов» (ТК НСО-2)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Энергосбытовая компания «Горкунов» (ТК НСО-2) (далее – АИИС КУЭ) предназначена для измерений приращений активной и реактивной электрической энергии, потребленной и переданной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ состоит из двух уровней:

- 1-й уровень измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;
- 2-й уровень информационно-вычислительный комплекс (ИВК) выполненный на основе серверного оборудования промышленного исполнения и работающего под управлением программного обеспечения ПК «Энергосфера», устройство синхронизации времени. ИВК включает в себя каналообразующую аппаратуру, сервер сбора данных и автоматизированные рабочие места (АРМ).

ИИК, ИВК, технические средства приема-передачи данных и линии связи образуют измерительные каналы (ИК).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 минут;
- средняя на интервале времени 30 минут активная и реактивная электрическая мощность.

ИВК обеспечивает выполнение следующих функций:

- периодический (один раз в сутки) и по запросу автоматический сбор результатов измерений электрической энергии;
- автоматический сбор данных о состоянии средств измерений и состоянии объектов измерений;
 - хранение не менее 3,5 лет результатов измерений и журналов событий;
- автоматический сбор результатов измерений после восстановления работы каналов связи, восстановления питания;
- перемножение результатов измерений, хранящихся в базе данных, на коэффициенты трансформации ТТ и ТН;
 - формирование отчетных документов;

- ведение журнала событий с фиксацией изменений результатов измерений, осуществляемых в ручном режиме, изменений коэффициентов ТТ и ТН, синхронизации (коррекции) времени с указанием времени до и после синхронизации (коррекции), пропадания питания, замены счетчика, событий, отраженных в журналах событий счетчиков;
 - конфигурирование и параметрирование технических средств ИВК;
 - сбор и хранение журналов событий счетчиков;
 - ведение журнала событий ИВК;
- синхронизацию времени в сервере с возможностью коррекции времени в счетчиках электроэнергии;
- аппаратную и программную защиту от несанкционированного изменения параметров и любого изменения данных;
 - самодиагностику с фиксацией результатов в журнале событий.

ИВК осуществляет автоматический обмен (передачу и получение) результатами измерений и данными коммерческого учета электроэнергии с субъектами оптового рынка электрической энергии и мощности (ОРЭМ), с другими АИИС КУЭ утвержденного типа, а также с инфраструктурными организациями ОРЭМ, в том числе: АО «АТС», АО «СО ЕЭС». Обмен результатами измерений и данными коммерческого учета электроэнергии между информационными системами субъектов оптового рынка и инфраструктурными организациями ОРЭМ осуществляется по электронной почте в виде электронных документов ХМL в формате 80020, 80030, 80040, 51070 и др., заверенных электронной цифровой подписью.

Информационные каналы связи в АИИС КУЭ построены следующим образом:

- посредством интерфейса RS-485 от счетчиков до коммуникатора;
- посредством сети Интернет через провайдера и оператора сотовой связи GSM для передачи данных от коммуникатора до ИВК;
- посредством сети Интернет через провайдера (основной канал) и сети сотовой связи GSM (резервный канал) для передачи данных от ИВК во внешние системы;
- посредством сети Интернет через провайдера для передачи данных с сервера баз данных на APM.

В АИИС КУЭ на функциональном уровне выделена система обеспечения единого времени (СОЕВ), включающая в себя часы сервера и счетчиков. Сервер получает шкалу времени UTC(SU) в постоянном режиме от устройства синхронизации времени УСВ-2. УСВ-2 осуществляет прием и обработку сигналов GPS/ГЛОНАСС по которым осуществляет постоянную синхронизацию собственных часов со шкалой времени UTC(SU), часов сервера с периодичностью не реже 1 раза в сутки. При каждом опросе счетчиков, сервер определяет поправку часов счетчиков и, в случае, если поправка часов счетчиков превышает по ± 2 с (параметр настраиваемый), то формирует команду синхронизации. Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В ИВК используется программное обеспечение ПК «Энергосфера». Программное обеспечение имеет уровень защиты от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 — «средний». Идентификационные признаки метрологически значимой части ПО АИИС КУЭ приведены в таблице 1.

Таблица 1 – Идентификационные признаки метрологически значимой части ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование программного обеспечения	pso_metr.dll	
Номер версии (идентификационный номер) программного обеспечения	1.1.1.1	
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	cbeb6f6ca69318bed976e08a2bb7814b	

Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4 и 5.

Таблица 2 – Состав ИК

1 403	,		1		
№ ИК	Наименование ИК	TT	TH	Счетчик	УСВ/ Сервер
1	РП 10 кВ, РУ 10 кВ, 1СШ-10 кВ яч. №9	ТОЛ-СЭЩ-10 Кл.т. 0,5S Ктт = 1000/5 Рег. № 32139-06	3HOЛ.06 Кл.т. 0,5 Ктн = $10000/\sqrt{3}$ $/100/\sqrt{3}$ Рег. № 3344-08	СЭТ- 4ТМ.03М.01 Кл.т. 0,5Ѕ/1 Рег. № 36697- 17	УСВ-2 Рег. № 41681-10;
2	РП 10 кВ, РУ 10 кВ, 2СШ-10 кВ яч. №15	ТОЛ-СЭЩ-10 Кл.т. 0,5S Ктт = 1000/5 Рег. № 32139-06	ЗНОЛ.06 Кл.т. 0,5 Ктн = 10000/√3 /100/√3 Рег. № 3344-08	СЭТ- 4ТМ.03М.01 Кл.т. 0,5S/1 Рег. № 36697- 17	сервер ИВК ПК «Энергосфе ра»

Примечания:

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2,при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблицах 3 и 4 метрологических характеристик.
- 2 Допускается замена устройства синхронизации времени на аналогичные утвержденных типов. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Метрологические характеристики ИК в нормальных условиях применения

ИК	and i	$I_2 \leq I$	изм<І 5	I ₅ ≤ I и	$_{3M}$ < I_{20}	I ₂₀ ≤ I и	_{3M} <i<sub>100</i<sub>	I ₁₀₀ ≤ I ₁	_{13M} ≤I ₁₂₀
$N_{\underline{0}}N_{\underline{0}}$	cos J	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %
1, 2	0,50	±4,9	±2,7	±3,1	±2,1	±2,3	±1,5	±2,3	±1,5
	0,80	±2,7	±4,1	±1,9	±2,9	±1,4	±2,1	±1,4	±2,1
	0,87	±2,4	±5,0	±1,8	±3,3	±1,2	±2,4	±1,2	±2,4
	1,00	±1,9	-	±1,2	-	±1,0	-	±1,0	-

Таблица 4 – Метрологические характеристики ИК в рабочих условиях применения

ИК	ang i	$I_2 \leq I$	изм<І 5	I ₅ ≤ I и	$_{13M}$ < I_{20}	I ₂₀ ≤ I и	_{3M} <i<sub>100</i<sub>	I ₁₀₀ ≤ I ,	ым ≤І 120
$N_{\underline{0}}N_{\underline{0}}$	cos J	$\delta_{ m W}{}^{ m A}$ %	$\delta_{ m W}^{ m P}$ %	$\delta_{ m W}{}^{ m A}$ %	$\delta_{ m W}^{\ m P}$ %	$\delta_{ m W}{}^{ m A}$ %	$\delta_{ m W}^{\ m P}$ %	$\delta_{ m W}{}^{ m A}$ %	$\delta_{ m W}^{ m P}$ %
1, 2	0,50	±5,1	±3,7	±3,4	±3,4	±2,6	±3,1	±2,6	±3,1
	0,80	±3,0	±4,9	±2,3	±3,9	±1,9	±3,4	±1,9	±3,4
	0,87	±2,8	±5,6	±2,2	±4,3	±1,8	±3,6	±1,8	±3,6
	1,00	±2,3	-	±1,4	-	±1,3	-	±1,3	-

Пределы допускаемой погрешности СОЕВ ±5 с

Примечание:

 I_2 – сила тока 2% относительно номинального тока TT;

 I_5 – сила тока 5% относительно номинального тока TT;

 I_{20} – сила тока 20% относительно номинального тока TT;

 I_{100} — сила тока 100% относительно номинального тока TT;

 I_{120} – сила тока 120% относительно номинального тока TT;

 $I_{\text{изм}}$ —силы тока при измерениях активной и реактивной электрической энергии относительно номинального тока TT;

 δ_{Wo}^{A} — доверительные границы допускаемой основной относительной погрешности при вероятности P=0.95 при измерении активной электрической энергии;

 $\delta_{W_0}^{P}$ — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии;

 δ_W^A — доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии в рабочих условиях применения;

 δ_W^P — доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии в рабочих условиях применения.

Таблица 5 – Основные технические характеристики ИК

таолица 5 Основные техни невине характеристики тих	
Наименование характеристики	Значение
Количество измерительных каналов	2
Нормальные условия:	
- Tok, $\%$ ot I_{hom}	от 2 до 120
 напряжение, % от U_{ном} 	от 99 до 101
- коэффициент мощности cos j	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха для счетчиков, °С:	от +21 до +25
Рабочие условия эксплуатации:	
допускаемые значения неинформативных параметров:	
- Tok, $\%$ ot I_{hom}	от 2 до 120
 напряжение, % от U_{ном} 	от 90 до 110
- коэффициент мощности cos j	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха, °С:	
- для ТТ и ТН	от -40 до +40
- для счетчиков	от 0 до +40
- для сервера	от +15 до +25
Период измерений активной и реактивной средней мощности и	30
приращений электрической энергии, минут	
Период сбора данных со счетчиков электрической энергии, минут	30
Формирование XML-файла для передачи внешним системам	Автоматическое

Продолжение таблицы 5

Формирование базы данных с указанием времени измерений и	Автоматическое
времени поступления результатов	
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	100
Сервер ИВК:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи между ИВК и внешними системами субъектов ОРЭМ, а также с инфраструктурными организациями ОРЭМ.

Ведение журналов событий:

- -счётчика, с фиксированием событий:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- ИВК, с фиксированием событий:
 - даты начала регистрации измерений;
 - перерывы электропитания;
 - программные и аппаратные перезапуски;
 - установка и корректировка времени;
 - переход на летнее/зимнее время;
 - нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счётчика
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита информации на программном уровне:
 - результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервер ИВК.

Знак утверждения типа

наносится на титульный лист формуляра 123.411711.002.ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Энергосбытовая компания «Горкунов» (ТК НСО-2). Формуляр».

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Трансформаторы тока	ТОЛ-СЭЩ-10	4
Трансформаторы напряжения	3НОЛ.06	6
Счетчики	CЭT-4TM.03M.01	2
ИВК	ПК «Энергосфера»	1
COEB	УСВ-2	1
Коммуникатор	C-1.02	1
Система автоматизированная	123.411711.002.ФО	1
информационно-		
измерительная коммерческого		
учета электроэнергии ООО		
"Энергосбытовая компания		
"Горкунов" (ТК НСО-2).		
Формуляр		
Система автоматизированная	MΠ-257-RA.RU.310556-2019	1
информационно-		
измерительная коммерческого		
учета электроэнергии ООО		
"Энергосбытовая компания		
"Горкунов" (ТК НСО-2).		
Методика поверки		

Поверка

осуществляется по документу МП-257-RA.RU.310556-2019 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Энергосбытовая компания «Горкунов» (ТК НСО-2). Методика поверки», утвержденному ФГУП «СНИИМ» $27.12.2019~\Gamma$.

Основные средства поверки:

- в соответствии с «Методикой выполнения измерений параметров вторичных цепей измерительных трансформаторов тока и напряжения», аттестованной ФГУП «СНИИМ» 24 апреля 2014 г. (регистрационный № ФР.1.34.2014.17814);
 - устройство синхронизации частоты и времени Метроном версии 300 (Рег. № 56465-14);
- для поверки измерительных компонентов, входящих в состав АИИС КУЭ применяются средства поверки, указанные в методиках поверки, утвержденных при утверждении типа измерительных компонентов.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик АИИС КУЭ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Энергосбытовая компания «Горкунов» (ТК НСО-2)» Методика измерений аттестована ФГУП «СНИИМ». Аттестат аккредитации ФГУП «СНИИМ» по аттестации методик (методов) измерений и метрологической экспертизе № RA.RU.311735 от 19.07.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Энергосбытовая компания «Горкунов» (ТК НСО-2)

ГОСТ Р 8.596-2002 Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Энергосбытовая компания «Горкунов» (ООО «Энергосбытовая компания «Горкунов»)

ИНН 5433970181

Адрес: 630099, г. Новосибирск, ул. Орджоникидзе, 40, офис 2411

Юридический адрес: 633100, Новосибирская обл., Новосибирский район, село Толмачево, Советская ул., 142, каб.20

Телефон: +7 (383) 349-93-96

Испытательный центр

Западно-Сибирский филиал Федерального государственного унитарного предприятия «Всероссийский научно - исследовательский институт физико-технических и радиотехнических измерений» (Западно-Сибирский филиал ФГУП «ВНИИФТРИ»)

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4 Телефон (факс): +7 (383) 210-08-14, +7 (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от $14.01.2015 \, \Gamma$.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____ 2020 г.