ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Независимая энергосбытовая компания Краснодарского края» для электроснабжения городских электросетей в границах города Славянск-на-Кубани (АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани»)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «Независимая энергосбытовая компания Краснодарского края» для электроснабжения городских электросетей в границах города Славянск-на-Кубани (АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани») (далее - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерения, которая состоит из 25 измерительных каналов (ИК), указанных в таблице 2.1 (25 точек измерений). АИИС КУЭ реализуется в филиале ОАО «НЭСК», на энергообъектах территориально расположенных в г. Славянск-на-Кубани Краснодарского края и его окрестностях.

ИК АИИС КУЭ включают в себя следующие уровни:

1-ый уровень — измерительно-информационные комплексы (ИИК), включающие измерительные трансформаторы тока (ТТ) класса точности 0,5 и 0,5S по ГОСТ 7746-2001, измерительные трансформаторы напряжения (ТН) класса точности 0,5 по ГОСТ 1983-2001, счётчики активной и реактивной электроэнергии типа СЭТ-4ТМ.03М класса точности 0,5S по ГОСТ Р 52323-2005 (в части активной электроэнергии) и класса точности 1,0 по ГОСТ Р 52425-2005 (в части реактивной электроэнергии), счётчики активной и реактивной электроэнергии типа СЭТ-4ТМ.03 класса точности 0,5S по ГОСТ 30206-94 (в части активной электроэнергии) и класса точности 1,0 по ГОСТ 26035-83 (в части реактивной электроэнергии), вторичные электрические цепи и технические средства каналов передачи данных.

2-ой уровень — измерительно-вычислительные комплексы энергообъектов (ИВКЭ), созданные на базе контроллеров сетевых индустриальных СИКОН С70 (Госреестр СИ РФ № 28822-05, зав. № 05362, 05901), выполняющих функцию устройств сбора и передачи данных (УСПД), источников бесперебойного питания и технических средств приёма-передачи данных, установленных на Π C 110/35/10 кВ «Центральная» и Π C 110/35/10 кВ «Славянская».

3-ий уровень – информационно-вычислительный комплекс (ИВК) состоит из двух центров сбора и обработки информации – ИВК АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани» и ЦСОД ОАО «НЭСК».

ИВК АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани» включает в себя сервер сбора данных (СД), сервер базы данных (БД), устройство синхронизации системного времени на базе GPS-приемника типа УСВ-1 (Зав. № 1039), источник бесперебойного питания, автоматизированные рабочие места персонала (АРМ) персонала, программное обеспечение (ПО) «Пирамида 2000», технические средства приёма-передачи данных.

ЦСОД ОАО «НЭСК» включает в себя серверы для организации и обслуживания локальной вычислительной сети предприятия, в том числе сервер базы данных (БД) АИИС КУЭ, устройство синхронизации системного времени на базе GPS-приемника типа УСВ-1 (Зав. № 1624), источник бесперебойного питания, автоматизированные рабочие места персонала (АРМ), программное обеспечение (ПО) «Пирамида 2000», технические средства приёма-передачи данных.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счётчика электрической энергии. В счётчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счётчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Для ИК № 1-16 цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает на входы УСПД: для ИК № 1-5 на входы УСПД СИКОН С70 (Зав. № 05362), для ИК № 6-16 на входы УСПД СИКОН С70 (Зав. № 05901), где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы по основному и резервному каналам сотовой связи стандарта GSM, а также отображение информации по подключенным к УСПД устройствам. Далее, по запросу ИВК, УСПД передают запрашиваемую информацию на верхний уровень системы по сотовым каналам связи стандарта GSM.

Для остальных ИК цифровой сигнал с выходов счетчиков по сотовым каналам связи стандарта GSM поступает непосредственно в ИВК АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани», где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН.

На верхнем — третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Из сервера базы данных ИВК АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани», информация о результатах измерений активной и реактивной электроэнергии и «журналы событий» передаются в Центр сбора и обработки данных ОАО «НЭСК» (ЦСОД ОАО «НЭСК»).

Передача информации в ИАСУ КУ ОАО «АТС» и другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов формата 80020 и 80030 в соответсвии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в ОАО «АТС», ОАО «СО ЕЭС» и смежным субъектам» к Договору о присоединении к торговой системе оптового рынка.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), созданной на основе подключенных по интерфейсу RS-232 устройств синхронизации времени УСВ-1 (Госреестр СИ РФ № 28716-05, зав. № 1039) к серверу СД ИВК АИИС КУЭ и УСВ-2 (Госреестр СИ РФ № 41681-09, зав. № 2251, 2261) к УСПД уровня ИВКЭ. Время встроенных часов УСВ синхронизировано с единым календарным временем, которое передается на УСВ со спутников глобальной системы позиционирования - GPS, сличение ежесекундное, предел допускаемой абсолютной погрешности синхронизации фронта выходного импульса 1 Гц к шкале координированного времени UTC от 0... 0,5 с.

УСВ, установленное на уровне ИВК АИИС КУЭ ОАО «НЭСК» для ГТП «Славянскна-Кубани», осуществляет автоматическую коррекцию времени встроенных часов сервера СД, сервера БД и АРМ персонала. Сличение времени встроенных часов сервера СД, сервера БД и АРМ персонала со временем встроенных часов УСВ, выполняется не реже одного раз в 60 мин, погрешность синхронизации \pm 0,1 с. Корректировка времени встроенных часов сервера СД осуществляется автоматически независимо от наличия и величины рассогласования единого календарного времени и времени встроенных часов сервера СД. Сервер СД осуществляет коррекцию времени встроенных часов счетчиков. Сличение времени встроенных часов счетчиков со временем встроенных часов сервера СД, выполняется 1 раз в 30 мин при каждом сеансе опроса. Корректировка времени встроенных часов УСПД ИВКЭ осуществляется автоматически 1 раз в сутки, при обнаружении рассогласования времени встроенных часов сервера СД и счетчика более \pm 2 с.

УСВ, установленные на уровне ИВКЭ АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани», осуществляет автоматическую коррекцию времени встроенных часов УСПД. Сличение времени встроенных часов УСПД со временем встроенных часов УСВ ежеминутно, погрешность синхронизации \pm 0,1 с. УСПД осуществляет коррекцию времени встроенных часов счётчиков. Сличение времени встроенных часов счётчиков со временем встроенных часов УСПД, выполняется один раз в 30 мин при каждом сеансе опроса. Корректировка времени встроенных часов счётчика осуществляется автоматически 1 раз в сутки, при обнаружении рассогласования времени встроенных часов УСПД и счётчика более \pm 2 с.

Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000», в состав которого входят программные модули, указанные в таблице 1. ПК обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое ПО «Пирамида 2000».

Метрологические значимые модули ПО АИИС КУЭ представлены в таблице 1.

Таблица 1 – Метрологические значимые модули ПО АИИС КУЭ.

Наименование программных модулей ПО	Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика ционный но- мер) ПО	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
1	2	3	4	5
Модуль вычисления значений энергии и мощности по груп- пам точек учета	CalcClients.dll	не ниже 3	e55712d0blb219065 d63da949114dae4	MD5
Модуль расчета не- баланса энер- гии/мощности	CalcLeakage.dll	не ниже 3	bl959ff70belebl7c8 3f7b0f6d4al32f	MD5
Модуль вычисления значений энергии потерь в линиях и трансформаторах	CalcLosses.dll	не ниже	d79874dl0fc2bl56a0 fdc27elca480ac	MD5
Общий модуль, содержащий функции, используемые при вычислениях различных значений и проверке точности вычислений	Metrology.dll	не ниже	52e28d7b608799bb3c cea41b548d2c83	MD5

1	2	3	4	5
Модуль обработки значений физических величин, передаваемых в бинарном протоколе	ParseBin.dll	не ниже	6f557f885b7372613 28cd77805bdlba7	MD5
Модуль обработки значений физических величин, передаваемых по протоколам семейства МЭК	ParseIEC.dll	не ниже 3	48e73a9283dle6649 4521f63d00b0d9f	MD5
Модуль обработки значений физических величин, передаваемых по протоколу Modbus	ParseModbus.dll	не ниже 3	c391d64271acf4055 bb2a4d3felf8f48	MD5
Модуль обработки значений физических величин, передаваемых по протоколу Пирамида	ParsePiramida.dll	не ниже 3	ecf532935cala3fd32 15049aflfd979f	MD5
Модуль формирования расчетных схем и контроля целостности данных нормативносправочной информации	SynchroNSI.dll	не ниже	530d9b0126f7cdc23 ecd814c4eb7ca09	MD5
Модуль расчета величины рассин-хронизации и значений коррекции времени	VerifyTime.dll	не ниже	1ea5429b261fb0e28 84f5b356aldle75	MD5

Системы информационно-измерительные контроля и учета энергопотребления «Пирамида», включающие в себя ПО «Пирамида 2000», внесены в Госреестр № 21906-11. ПО «Пирамида 2000» аттестовано на соответствие требованиям нормативной документации, свидетельство об аттестации № АПО-209-15 от 26 октября 2011 года, выданное ФГУП «ВНИИМС».

Пределы допускаемой дополнительной абсолютной погрешности по электроэнергии, получаемой за счет математической обработки измерительной информации, поступающей от счетчиков, составляет 1 единицу младшего разряда измеренного значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых электросчетчиков и измерительных трансформаторов.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.2 нормированы с учетом ПО.

Уровень защиты ПО АИИС КУЭ от непреднамеренных и преднамеренных изменений согласно Р 50.2.077-2014 «ГСИ. Испытания средств измерений в целях утверждения типа. Проверка защиты программного обеспечения» соответствует уровню «высокий».

Метрологические и технические характеристики

Состав измерительно-информационных комплексов и метрологические характеристики ИК АИИС КУЭ приведены в таблицах 2.1 и 2.2.

Таблица 2.1 – Состав измерительно-информационных комплексов АИИС КУЭ

Изме	рительные саналы		Состав измерительно					
Номер ИК	Наименование объекта учёта, диспетчерское наименование присоединения	кла	Вид СИ, сс точности, коэффициент трансформации, № Госреестра СИ		Обозначение, тип	Заводской номер	Ктт -Ктн -Ксч	Наименование измеряемой величины
1	2		3		4	5	6	7
		_	KT = 0,5	A	ТЛМ-10-1 У3	№ 4507		. 0
		LI	KTT = 100/5	В	-	-		W _P W
	χ. Σ., ξ. «		№ 2473-69	C	ТЛМ-10-1 У3	№ 4508		ія, іая, рем
_	ПС 110/35/10 кВ «Центральная», КРУН-10 кВ Т-1, фидер «Ц-3»	TH 1cm	KT = 0,5 Kth = 10000/100 № 831-69	A B C	НТМИ-10-66	№ 795	2000	Энергия активная, W _P нергия реактивная, W Календарное время
	ПС 1 «Цен КРУҒ фи	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 36697-08	СЭТ-4ТМ.03М.01		№ 0803103635		Энергия активная, W _P Энергия реактивная, W _Q Календарное время
			KT = 0,5	A	ТЛМ-10-2 У3	№ 3011		0
	_	TT	$K_{TT} = 200/5$	В	-	-		W _P
	表。 二、 二、 、二、		№ 2473-69	C	ТЛМ-10-2 У3	№ 3914		я, ^т ая,
2	ПС 110/35/10 кВ «Центральная», КРУН-10 кВ Т-1, фидер «Ц-7»	TH 1cm	KT = 0,5 Kth = 10000/100 № 831-69	A B C	НТМИ-10-66	№ 795	4000	Энергия активная, W _P нергия реактивная, W Календарное время
	ПС 1. «Цен КРУН фид	Ж КТ = 0,5S/1,0 Ксч = 1 № 36697-08		(CЭT-4TM.03M.01	№ 0804101404		Энергия активная, W _P Энергия реактивная, W _Q Календарное время
			KT = 0.5	A	ТЛМ-10-2 У3	№ 3004		~
	деј	TT	$K_{TT} = 200/5$	В	-	-		> ≥ ⊾
	кВ фи		№ 2473-69	C	ТЛМ-10-2 У3	№ 3917]]	ная, V вная, времз
33	TC 110/35/10 кВ «Центральная», H-10 кВ Т-1, фи «Ц-9»	TH 1cm	KT = 0,5 Kth = 10000/100 № 831-69	A B C	НТМИ-10-66	№ 795	4000	Энергия активная, нергия реактивная Календарное врет
	3 ПС 110/35/10 кВ «Центральная», КРУН-10 кВ Т-1, фидер «Ц-9»		* XE 031 05 XE 0,5S/1,0 Keq = 1 No 36697-08		СЭТ-4ТМ.03М.01	№ 0803102666		Энергия активная, ' Энергия реактивная, Календарное врем

1	олжение т 2	иолиц	3		4	5	6	7
			KT = 0,5	Α	ТЛМ-10-2 У3	№ 1903		. 0
		TT	$K_{TT} = 200/5$	В	-	-		[№] ₩
	ж. . Т., «		№ 2473-69	C	ТЛМ-10-2 У3	№ 9381		я, ^т ая,
4	ПС 110/35/10 кВ «Центральная», КРУН-10 кВ Т-1, фидер «Ц-11»	ТН 1сш	KT = 0,5 Kth = 10000/100 № 831-69	A B C	НТМИ-10-66	№ 795	4000	Энергия активная, W _P Энергия реактивная, W _, Календарное время
	ПС 1 «Цен КРУН фил	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 27524-04		СЭТ-4ТМ.03.01	№ 0110054021		Энергия Энергия Кален,
		_	KT = 0,5	A	ТЛМ-10-2 У3	№ 9330		. 0
		TT	$K_{TT} = 200/5$	В	-	-		$^{N}_{ m P}$
	₩. Ţ., %		№ 2473-69	C	ТЛМ-10-1	№ 0108		ıя, ^т ая, эем
5	ПС 110/35/10 кВ «Центральная», СРУН-10 кВ Т-1 фидер «Ц-13»	«Пентральная КВУН-10 кВ Т- КТ = 0,5 Ктн = 10000/100 № 831-69 КТ = 0,5S/1,0 КТ = 0,5S/1,0		A B C	НТМИ-10-66	№ 795	4000	Энергия активная, W _P нергия реактивная, W, Календарное время
	ПС 1 «Цен КРУН фил	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 36697-08	(CЭT-4TM.03M.01	№ 0804101894		Энергия активная, V Энергия реактивная, Календарное врем
			KT = 0,5	Α	ТПЛ-10	№ 45085		ζ
		TT	$K_{TT} = 200/5$	В	-	-		W _Р I, W _С МЯ
	кВ 1,		№ 1276-59	C	ТПЛ-10	№ 9367		я, \ ая,
9	6 ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-1 фидер «С-1»		ТЕ 1270-39 КТ = 0,5 Ктн = 10000/100 № 11094-87 КТ = 0,5S/1,0 КТ = 0,5S/1,0		НАМИ-10 У2	№ 7589		Энергия активная, W нергия реактивная, V Календарное время
	IIC 1 «Cля КРУН	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 27524-04	СЭТ-4ТМ.03.01		№ 0120071905		Энергия активная, W _P Энергия реактивная, W _Q Календарное время
		,	KT = 0,5	A	ТПЛ-10	№ 15348		. 0
		TT	$K_{TT} = 300/5$	В	-	-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	₩. , *		№ 1276-59	C	ТПЛ-10	№ 669		ная, W вная, V время
7	ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-1 фидер «С-3»	ТН 1сш	KT = 0,5 Kth = 10000/100 № 11094-87	A B C	НАМИ-10 У2	№ 7589	0009	і активная, реактивная царное вреї
	IIC 1 «Cл KPYF фи,	Счётчик	KT = 0,5S/1,0 Kcч = 1 № 36697-08	(CЭT-4TM.03M.01	№ 0804101957		Энергия активная, Энергия реактивная, Календарное врем
			KT = 0,5	Α	ТПЛМ-10	№ 14578		2
		TT	$K_{TT} = 150/5$	В	-	-		W _Р , W _С
	жВ ,,, ,'-1,		№ 2363-68	C	ТПЛМ-10	№ 14977		ıя, ¹ ая, эем
∞	ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-1, фидер «С-5»	ТН 1сш	KT = 0,5 Kth = 10000/100 № 11094-87	A B C	НАМИ-10 У2	№ 7589	3000	Энергия активная, W нергия реактивная, V Календарное время
	ПС 11 «Сла КРУН фил		KT = 0,5S/1,0 Kcч = 1 № 36697-08	CЭT-4TM.03M.01		№ 0803102606		Энергия активная, $W_{ m P}$ Энергия реактивная, $W_{ m Q}$ Календарное время

11pog	олжение т 2	аолиц	3	5	6	7		
1	2		KT = 0.5	A	4 ТПЛ-10	№ 33351	3	
		LL	KT = 0.5 $KTT = 200/5$	В	-	-	1	$egin{aligned} W_{ m P} \ (,W_{ m Q} \ MR \end{aligned}$
	кВ ,,',		№ 1276-59	C	ТПЛ-10	№ 45074	1	т, V 1я, '
6	ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-1, фидер «С-7»	TH 1cm	КТ = 0,5 Ктн = 10000/100 № 11094-87	A B C	НАМИ-10 У2	№ 7589	4000	Энергия активная, W нергия реактивная, V Календарное время
	ПС 1. «Сле КРУН фид	Счётчик	КТ = 0,5S/1,0 Ксч = 1 № 36697-08	(СЭТ-4ТМ.03М.01	№ 0803102634		Энергия активная, W _P Энергия реактивная, W Календарное время
			KT = 0,5	A	ТВЛМ-10	№ 78381		2
		TT	$K_{TT} = 150/5$	В	-	-		$W_{\rm P}$
	жВ *, -1, *		№ 1856-63	C	ТВЛМ-10	№ 78375		я, ¹ ая,
10	ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-1, фидер «С-9»	ТН 1сш	KT = 0,5 Kth = 10000/100 № 11094-87	A B C	НАМИ-10 У2	№ 7589	3000	Энергия активная, W нергия реактивная, V Календарное время
	ПС 1 «Сля КРУН фил	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 36697-08	(CЭT-4TM.03M.01	№ 0804101880		Энергия активная, W _P Энергия реактивная, W _Q Календарное время
			KT = 0.5	Α	ТПЛ-10	№ 17280		2
		L	$K_{TT} = 200/5$	В	-	-		В М
	ğ,, ξ, «		№ 1276-59	C	ТПЛ-10	№ 16924		я, \ ая, юм
111	ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-1, фидер «С-11»	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		A B C	НАМИ-10 У2	№ 7589	4000	Энергия активная, W _P нергия реактивная, W Календарное время
	ПС 1 «Сля КРУН фид	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 36697-08	(CЭT-4TM.03M.01	№ 0804101839		Энергия активная, W _P Энергия реактивная, W _Q Календарное время
			KT = 0,5	A	ТПЛ-10	№ 8868		. 0
		TT	$K_{TT} = 200/5$	В	-	-		$^{\mathcal{N}}_{ ext{P}}$ $^{\mathcal{M}}$
	9 KB 8%, T-1, 3%		№ 1276-59	C	ТПЛ-10	№ 4020		
12	ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-1, фидер «С-13»	TH 1cm	KT = 0,5 Kth = 10000/100 № 11094-87	A B C	НАМИ-10 У2	№ 7589	4000	Энергия активная, ^v нергия реактивная, Календарное врем
	ПС 1 «Сл КРУН фил	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 36697-08	(CЭT-4TM.03M.01	№ 0803103565		Энергия активная, Энергия реактивная Календарное врем
			KT = 0,5	A	ТОЛ-СЭЩ-10-11 У2	№ 09756-11		0
		TT	$K_{TT} = 200/5$	В	-	-		χ Ψ Μ
	кВ , -2,		№ 32139-06	C	ТОЛ-СЭЩ-10-11 У2	№ 09730-11]	я, ¹ ая, юм
	10 кая: В Т		KT = 0.5	A	3НОЛП.4-10 У2	№ 4001686		вна 1вн ? вр
13	35/ HCI 0 K	ТН 2сш	$Kth = 10000: \sqrt{3}/100: \sqrt{3}$	В	3НОЛП.4-10 У2	№ 4001685	4000	ТИ] КТУ НОЄ
1	10/ авя I-1(tep		№ 46738-11	C	3НОЛП.4-10 У2	№ 4001684	40	r ak pea tap
	13 ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-2, фидер «С-2»		KT = 0,5S/1,0 Kcч = 1 № 36697-08	(СЭТ-4ТМ.03М.01	№ 0804130882		Энергия активная, W _P Энергия реактивная, W _, Календарное время

11po ₂	олжение т 2	аолиц	3	4	5	6	7	
			KT = 0,5	А ТОЛ-СЭЩ-10-11 У2	№ 09795-11		~	
		TT	$K_{TT} = 200/5$	В -	-		W _Р I, W _Q ИЯ	
	Å, , ,		№ 32139-06	С ТОЛ-СЭЩ-10-11 У2	№ 09871-11		я, V ая, ем	
	101 3 T 14%		KT = 0.5	А ЗНОЛП.4-10 У2	№ 4001686	1	зна: вна:	
4	35// HCK) KI «C	ТН 2сш	$Kth = 10000: \sqrt{3}/100: \sqrt{3}$	В ЗНОЛП.4-10 У2	№ 4001685	00	гив кти ное	
14	С 110/35/10 кВ Славянская», УН-10 кВ Т-2, фидер «С-4»	, 2	№ 46738-11	С ЗНОЛП.4-10 У2	№ 4001684	4000	ak eai api	
	14 ПС 110/35/10 к «Славянская» КРУН-10 кВ Т- фидер «С-4»		КТ = 0,5S/1,0 Ксч = 1 № 36697-08	СЭТ-4ТМ.03М.01	№ 0803102785		Энергия активная, W Энергия реактивная, V Календарное время	
			KT = 0,5	А ТОЛ-СЭЩ-10-11 У2	№ 09731-11		2	
		TT	$K_{TT} = 300/5$	В -	-		$W_{\rm P}$	
	кВ '-', , ,		№ 32139-06	С ТОЛ-СЭЩ-10-11 У2	№ 09755-11		я, \ ая, юем	
	10 сая В Т	I	KT = 0.5	А ЗНОЛП.4-10 У2	№ 4001686		активная, еактивная арное врем	
15	35/ HCF 0 K]	ТН 2сш	$KTH = 10000: \sqrt{3}/100: \sqrt{3}$	В ЗНОЛП.4-10 У2	№ 4001685	0009	ТИН КТУ НОС	
	10// авя I-1(№ 46738-11	С ЗНОЛП.4-10 У2	№ 4001684	09	r ak pea tap	
	ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-2 фидер «С-6»	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 36697-08	СЭТ-4ТМ.03М.01	№ 0810120262		Энергия активная, W _P Энергия реактивная, W _Q Календарное время	
			KT = 0,5	А ТОЛ-СЭЩ-10-11 У2	№ 09761-11		0	
		TT	$K_{TT} = 300/5$	В -	-		W _P , W _C	
	кВ '-', , ,		№ 32139-06	С ТОЛ-СЭЩ-10-11 У2	№ 09742-11		я, \ ая,	
	10 3 T 8 T		KT = 0,5	А ЗНОЛП.4-10 У2	№ 4001686		зна гвн з вр	
16	35/ HCk) KJ	ТН 2сш	Ктн = $10000:\sqrt{3}/100:\sqrt{3}$	В ЗНОЛП.4-10 У2	№ 4001685	0009	ТИН КТИ НОС	
<u> </u>	10// 188 1-1(tep	- (1	№ 46738-11	С ЗНОЛП.4-10 У2	№ 4001684	09	ak oea (ap)	
	ПС 110/35/10 кВ «Славянская», КРУН-10 кВ Т-2, фидер «С-8»	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 36697-08	СЭТ-4ТМ.03М.01	№ 0812123145		Энергия активная, W _P Энергия реактивная, W _Q Календарное время	
			KT = 0,5	А ТЛМ-10-2 У3	№ 5022		2	
	â.	TT	$K_{TT} = 200/5$	В -	-		W _Р , W _Q ля	
			№ 2473-69	С ТЛМ-10-2 У3	№ 1323			
17	ПС 110/10 кВ «ПТ КРУН-10 кВ Т-1 фидер «ПФ-5»	ТН 1сш	KT = 0,5 Kth = 10000/100 № 831-69	A B HTMИ-10-66 C	№ ЕКУ	4000	нергия активная, ` ергия реактивная, Календарное врем	
	ПС 110, КРУЕ фиде	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 27524-04	СЭТ-4ТМ.03.01	№ 0110053097		Энергия активная, Энергия реактивная Календарное врем	
			KT = 0,5	А ТЛМ-10-2 У3	№ 9608		~	
	â	TT	$K_{TT} = 200/5$	В -			$W_{ m P}$, $W_{ m Q}$	
	111d		№ 2473-69	С ТЛМ-10-2 У3	№ 2814		я, ¹ ая, юм.	
18	ПС 110/10 кВ «ПТФ» КРУН-10 кВ Т-1, фидер «ПФ-7»	ТН	KT = 0,5 Kth = 10000/100 № 831-69	А В HTMИ-10-66 С	№ ЕКУ	4000	Энергия активная, W _P нергия реактивная, W Календарное время	
	ПС 110/) КРУН фиде		KT = 0,5S/1,0 Kcч = 1 № 36697-08	СЭТ-4ТМ.03М.01	№ 0804101625		Энергия активная, Энергия реактивная, Календарное врем	

1	2		3		4	5	6	7
			KT = 0,5	Α	ТПЛ-10	№ 0878		0
		TT	$K_{TT} = 200/5$	В	-	ı		В М
	Ψ, «		№ 1276-59	C	ТПЛ-10	№ 69573		я, \ ая,
19	ПС 220/110/10 кВ «Славянская», КРУН-10 кВ, фидер «Сг-5»	TH	KT = 0,5 Kth = 10000/100 № 831-69	A B C	НТМИ-10-66 У3	№ ТСКА	4000	Энергия активная, W_{P} Энергия реактивная, W_{Q} Календарное время
	ПС 2 «С. КР фи		КТ = 0,5S/1,0 Ксч = 1 № 27524-04		СЭТ-4ТМ.03.01	№ 0111050012		Энергия Энергия Кален)
			KT = 0.5	A	ТПЛМ-10	№ 05763		. 0
	(TT	$K_{TT} = 50/5$	В	-	-		М М
	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3		№ 2363-68	C	ТПЛМ-10	№ 70753		я, [,] ая,
20	02 KTT = 50/5 № 2363-68 KT = 0,5 KTH = 10000/100 KT = 0,5 KTH = 10000/100 Me 831-69 KT = 0,5S/1,0 Kcч = 1 No 36697-08		A B HТМИ-10-66 УЗ № 230 C Image: C <			1000	Энергия активная, W _P нергия реактивная, W Календарное время	
			Ксч = 1	CЭТ-4TM.03M.01		№ 0811120125		Энергия активная, W _P Энергия реактивная, W _Q Календарное время
	۲)		KT = 0.5	Α	ТЛК 10-5 У3	№ 06745		. 0
	§ ∐	TT	$K_{TT} = 100/5$	В	-	-		
	% C (*)	L	№ 9143-01	C	ТЛК 10-5 У3	№ 06749		я, \ ая, ем
	(1/5) (1/5) (1/5) (1/3)		KT = 0.5	Α	ЗНИОЛ-10 УЗ	№ 0246		ная вна вр
	B «L «L 10 льн	TH	Ктн = $10000/\sqrt{3}/100/\sqrt{3}$	В	ЗНИОЛ-10 УЗ	№ 0076	0(гив сти 10е
21	4 к кВ 35/		№ 25927-03	С	ЗНИОЛ-10 УЗ	№ 0247	2000	акт еан арн
	ТП 10/0,4 кВ «ЦЗ-04» (от ВЛ-10 кВ «Ц-5» с ПС 110/35/10 кВ «Центральная»)	Счётчик	KT = 0,5S/1,0 Ксч = 1 № 27524-04		СЭТ-4ТМ.03.01	№ 0110052098		Энергия активная, W _P Энергия реактивная, W _, Календарное время
	^ <u> </u>		KT = 0,5	Α	ТПЛМ-10	№ 03764		. 0
	.09п» -6» с -12»)	TT	$K_{TT} = 75/5$	В	-	-		` □ >
	7-0, 7-6, 7-1	L	№ 2363-68	C	ТПЛМ-10	№ 02019		
	«Ц7- «HC		KT = 0.5	Α	ЗНОЛ.06-10 УЗ	№ 8660		ная, вная врег
6)	Ř Ř Ř	TH	K тн = $10000/\sqrt{3}/100/\sqrt{3}$	В	ЗНОЛ.06-10 УЗ	№ 8661	1500	гие кти 10е
22	4 k 0 k 6 k	L	№ 3344-08	С	ЗНОЛ.06-10 УЗ	№ 8711	15	ak ea apı
	22 3TII 10/0,4 kB «Ц7-(0T BJI-10 kB «HC- IIC 35/10/6 kB «HC-		KT = 0,5S/1,0 Ксч = 1 № 27524-04		CЭT-4TM.03.01 № 0108071872			Энергия активная, Энергия реактивная Календарное врез
			KT = 0,5	Α	ТОП-0,66 УЗ	№ 9056719		~
	<u>C</u>	TT	$K_{TT} = 200/5$	В	ТОП-0,66 У3	№ 9057126	1	$_{ m I}^{ m W_P}$
	3.5	r .	№ 15174-06	С	ТОП-0,66 У3	№ 9056680		я, V 1я, ем:
23	КТП-523/1 (от ВЛ-6 кВ ф.523 По 35/6 кВ "X - 52")	TH	-	A B C	-	-	40	Энергия активная, W Энергия реактивная, V Календарное время
	23 KTII-52 (or BJI-6 kB d 35/6 kB "X		KT = 0,5S/1,0 Kcч = 1 № 36697-08	(CЭT-4TM.03M.09	№ 0805130399		Энергия Энергия Календ

1	2		3		4	5	6	7
	2 523 IIC 52")	TT	KT = 0,5S Ktt = 200/5 № 29482-07	A B C	T-0,66 Y3 T-0,66 Y3 T-0,66 Y3	№ 09117719 № 09117720 № 09117721	-	ная, W _P зная, W _Q время
24	ф. .		-	A B C	-	-	40	активная еактивна арное врє
24 KTII-5 (or BJI-6 kB 35/6 kB "?	Счётчик	КТ = 0,5S/1,0 Ксч = 1 № 27524-04		СЭТ-4ТМ.03.09	№ 0101072782		Энергия активная, Энергия реактивная Календарное врем	
	958 ф.523 X - 52")	LL	KT = 0,5 Ktt = 200/5 № 15174-06	A B C	ТОП-0,66 У3 ТОП-0,66 У3 ТОП-0,66 У3	№ 9055268 № 9056365 № 9056337	-	ная, W _P зная, W _Q время
25	25 -523/ -6 kB	HL	-	A B C	-	-	40	і активная реактивна царное врє
	KTII (or BJI- IIC 35/6	Счётчик	КТ = 0,5S/1,0 Ксч = 1 № 27524-04		СЭТ-4ТМ.03.09	№ 0110061064		Энергия активная, Энергия реактивная Календарное врем

Примечания:

- 1. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии по ГОСТ 30206-94 или ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и ГОСТ 26035-83 или ГОСТ Р 52425-2005 режиме измерения реактивной электроэнергии;
- 2. Допускается замена измерительных трансформаторов и счётчиков на аналогичные (см. п. 1 Примечаний) утверждённых типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2.1;
- 3. Допускается замена устройств сбора и передачи данных (УСПД) и устройств синхронизации времени (УСВ) на однотипные утверждённого типа.

Таблица 2.2 – Метрологические характеристики ИК АИИС КУЭ

		Границы относительной погрешности измерений активной и реактивной электрической энергии при индуктивной нагрузке для доверительной вероятности P=0,95									
		C	сновно	й (± d), %	6	в рабо	чих усл	овиях (±d), %		
№ИК	Диапазон тока	cos j = 1,0	$\cos j = 0.866/$ $\sin j = 0.5$	$\cos j = 0.8/\sin j = 0.6$	$\cos j = 0.5/$ $\sin j = 0.866$	cos j = 1,0	$\cos j = 0.866/\sin j = 0.5$	$\cos j = 0.8/\sin j = 0.6$	$\cos j = 0.5/$ $\sin j = 0.866$		
1	2	3	4	5	6	7	8	9	10		
	$0.05 I_{H1} \le I_1 < 0.1 I_{H1}$	1,8	2,5	2,9	5,5	3,0	3,7	4,1	6,6		
	$0,03 I_{H1} \le I_1 < 0,1 I_{H1}$	-	5,6	4,6	2,7	-	7,9	6,9	5,3		
1 2 5	$0.1 I_{H1} \le I_1 < 0.2 I_{H1}$	1,6	2,2	2,5	4,6	2,9	3,5	3,8	5,9		
1 - 3, 5, 7 - 16, 18, 20	$0,1 I_{H1} \leq I_1 \leq 0,2 I_{H1}$	-	4,7	3,8	2,4	-	7,2	6,5	5,1		
	$0.2 I_{H1} \le I_1 < I_{H1}$	1,2	1,5	1,7	3,0	2,6	3,1	3,3	4,7		
	$0,2 \mathbf{I}_{\mathrm{H}} \geq \mathbf{I}_{\mathrm{I}} \leq \mathbf{I}_{\mathrm{H}}$	-	3,1	2,6	1,8	-	6,3	5,8	4,9		
	$I_{{\scriptscriptstyle H}1} \leq I_{1} \leq 1,2 \ I_{{\scriptscriptstyle H}1}$	1,0	1,2	1,3	2,3	2,6	3,0	3,2	4,3		
		-	2,4	2,1	1,5	-	6,0	5,6	4,8		

$ 23 = \begin{bmatrix} 0.05 \ I_{n1} \le I_1 < 0.1 \ I_{n1} \\ 0.10 \ I_{n1} \le I_1 < 0.2 \ I_{n1} \\ 0.1 \ I_{n1} \le I_1 < 0.2 \ I_{n1} \\ 0.1 \ I_{n1} \le I_1 < 0.2 \ I_{n1} \\ 0.2 \ I_{n1} \le I_1 < I_{n1} \\ 0.2 \ I_{n1} \le I_1 < I_{n1} \\ 0.3 \ I_{n1} \le I_1 < I_{n1} \\ 0.4 \ I_{n1} \le I_1 < I_{n1} \\ 0.5 \ I_{n1} \le I_1 < I_{n1} \\ 0.7 \ I_{n1} \le I_1 < I_{n1} \\ 0.8 \ I_{n1} \le I_1 < I_{n1} \\ 0.9 \ I_{n1} \le I_{n1} < I_{n1} \\ 0.9 \ I_{n1} = I_{n1} < I_{n1} \\ 0.9 \ $	продолжение таолицы 2.2									
$ 23 = \begin{bmatrix} 0.05 \ I_{n1} \le I_1 < 0.1 \ I_{n1} \\ 0.1 \ I_{u1} \le I_1 < 0.2 \ I_{u1} \\ 0.2 \ I_{u1} \le I_{1} < 0.2 \ I_{u1} \\ 0.3 \ I_{u1} \le I_{1} < 0.2 \ I_{u1} \\ 0.4 \ I_{u1} \le I_{1} < 0.2 \ I_{u1} \\ 0.5 \ I_{u1} \le I_{1} < 0.2 \ I_{u1} \\ 0.7 \ I_{u1} \le I_{1} < I_{u1} \\ 0.8 \ I_{u1} \le I_{u1} \\ 0.9 \ I_{u1} \le I_{u1} \\ 0.05 \ I_{u1} \le I_{u1} \\ 0.08 \ I_{u1} \\ 0.07 \ I_{u1} \\ 0.07 \ I_{u1} \\ 0.07 \ I_{u1} \le I_{u1} \\ 0.08 \ I_{u1} \\ 0.07 \ I_{u1} \\ 0.08 \ I_{u1} \\ 0.08 \ I_{u1} \\ 0.09 \ I_{u1} $	1	2	3	4	5	6	7	8	9	10
$ 23 = \begin{bmatrix} 0.1 & I_{11} \leq I_{1} < 0.2 & I_{11} \\ 0.2 & I_{11} \leq I_{1} < 0.2 & I_{11} \\ 0.2 & I_{11} \leq I_{1} < I_{11} \\ 0.3 & I_{11} \leq I_{1} < I_{11} \\ 0.4 & I_{11} \leq I_{1} < I_{11} \\ 0.5 & I_{11} \leq I_{11} < I_{11} \\ 0.7 & I_{11} \leq I_{11} < I_{11} \\ 0.9 & I_{11} = I_{11} < I_{11} \\ 0.9 & I_$		$0.05 I_{\perp} < I_{\perp} < 0.1 I_{\perp}$	1,8	,		,	3,0	,	,	,
23 = 24 = 24 = 24 = 24 = 24 = 24 = 24 =		0,03 11 - 11 < 0,1 111	-	,	,	,	-			,
21, 22		0.11. < 1. < 0.21.	1,6	2,2	2,5	,	2,9	3,5	3,8	
$23 = \begin{bmatrix} 0,2 & I_{H1} \leq I_1 < I_{H1} & \frac{1}{1}, 0 & \frac{1}{1}, 2 & \frac{1}{1}, 3 & \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{1}, \frac{1}{4}, \frac{1}{4$		$0,1 I_{\rm H}] \leq 1] < 0,2 I_{\rm H}]$	-	,		,	-			,
23	21, 22	0.21 < 1 < 1	1,2	,	,		2,6			
$23 = \begin{bmatrix} I_{H1} \leq I_1 \leq I_{A1} \\ 0,05 & I_{H1} \leq I_1 < 0,1 & I_{H1} \\ 0,05 & I_{H1} \leq I_1 < 0,2 & I_{H1} \\ 0,1 & I_{H1} \leq I_1 < 0,2 & I_{H1} \\ 0,2 & I_{H1} \leq I_1 < 0,2 & I_{H1} \\ 0,2 & I_{H1} \leq I_1 < I_{H1} \\ 0,3 & I_{H1} \leq I_1 < I_{H1} \\ 0,05 & I_{H1} \leq I_1 < I_{H1} \\ 0,1 & I_{H1} \leq I_1 < I_{H1} \\ 0,2 & I_{H1} \leq I_1 < I_{H1} \\ 0,3 & I_{H1} \leq I_{H1} \\ 0,4 & I_{H1} \leq I_{H1} \\ 0,5 & I_{H1} \leq I_{H1} < I_{H1} \\ 0,5 & I_{H1} \leq I_{H1} \\ 0,5 & I_{H1} \leq I_{H1} \\ 0,7 & I_{H1} \leq I_{H1} \\ 0,8 & I_{H1} & I_{H1} \\ 0,9 & I_{H1} & I_{H1} \\ 0,0 & I_{H1}$		$0,2 \mathbf{I}_{\mathrm{H}} \geq \mathbf{I}_{\mathrm{I}} \leq \mathbf{I}_{\mathrm{H}}$	-	,		,	-	,		
$23 = \begin{bmatrix} 0.05 & I_{H1} \leq I_{I} < 0.1 & I_{H1} \\ 0.05 & I_{H1} \leq I_{I} < 0.1 & I_{H1} \\ 0.1 & I_{H1} \leq I_{I} < 0.2 & I_{H1} \\ 0.2 & I_{H1} \leq I_{I} < 0.2 & I_{H1} \\ 0.3 & I_{H1} \leq I_{I} < 0.2 & I_{H1} \\ 0.4 & I_{H1} \leq I_{I} < I_{H1} \\ 0.5 & I_{H1} \leq I_{I} < I_{H1} \\ 0.6 & I_{H1} \leq I_{I} < I_{H1} \\ 0.7 & I_{H1} \leq I_{I} < I_{H1} \\ 0.8 & I_{H1} & I_{H1} & I_{H1} \\ 0.9 & I_{H1} & I_{H1} & I_{H1} \\ 0.0 & I_{H1} & I_{H1} \\ 0.0 & I_{H1} & I_{H1} \\ 0.0 & I_{H1} & I_{H1} \\ 0$		I . < I. < 1.2 I .	1,0	,			2,6			,
$23 = \begin{bmatrix} 0.05 \ I_{H1} \le I_1 < 0.1 \ I_{H1} \\ 0.1 \ I_{H1} \le I_1 < 0.2 \ I_{H1} \\ 0.2 \ I_{H1} \le I_1 < I_{H1} \\ 0.2 \ I_{H1} \le I_1 < I_{H1} \\ 0.3 \ I_{H1} \le I_1 < I_{H1} \\ 0.4 \ I_{H1} \le I_1 \le I_{H1} \\ 0.6 \ I_{H1} \le I_1 \le I_{H1} \\ 0.70 \ I_{H1} \le I_1 \le I_{H1} \\ 0.8 \ I_{H1} \le I_1 \le I_{H1} \\ 0.90 \ I_{H1} \le I_1 < I_{H1} \\ 0.90 \ I_{H1} \le I_1 \le I_{H1} \\ 0.90 \ I_{H1} = I_{H1} \\ 0.90 \ I_{$		I _H 1 = I ₁ = I,2 I _H 1	-	,		,	-			
$23 \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.05 L < L < 0.1 L	1,7				2,9	3,6		,
23		$0,03 \mathbf{I}_{\mathrm{H}} \subseteq \mathbf{I}_{\mathrm{I}} \setminus 0,\mathbf{I} \mathbf{I}_{\mathrm{H}}$	-	,	,		-	,		,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.11. < 1. < 0.21.	1,5			,	2,8		3,7	,
$24 = \begin{bmatrix} 0.2 \ I_{H1} \leq I_{1} < I_{H1} \\ I_{H1} \leq I_{1} \leq I_{2} I_{H1} \\ 0.01 \ I_{H1} \leq I_{1} \leq I_{2} I_{H1} \\ 0.02 \ I_{H1} \leq I_{1} < 0.02 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.02 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.02 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.02 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.01 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.01 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.01 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.01 \ I_{H1} \\ 0.09 \ I_{12} \ I_{13} \ I_{24} \\ 0.1 \ I_{H1} \leq I_{1} < I_{14} \\ 0.2 \ I_{H1} \leq I_{1} < I_{14} \\ 0.3 \ I_{15} \ I_{25} \ I_{25} \\ 0.3 \ I_{10} \ I_{11} \ I_{19} \ I_{25} \ I_{29} \\ 0.05 \ I_{H1} \leq I_{1} < I_{11} \\ 0.08 \ I_{10} \ I_{11} \ I_{19} \ I_{25} \ I_{29} \\ 0.09 \ I_{21} \ I_{18} \ I_{14} \\ - \ I_{21} \ I_{21} \ I_{21} \\ - \ I_{21} \ I_{22} \ I_{21} \\ - \ I_{22} \ I_{23} \ I_{25} \\ - \ I_{23} \ I_{25} \ I_{29} \\ - \ I_{23} \ I_{25} \\ - \ I_{24} \ I_{25} \ I_{29} \\ - \ I_{25} \ I_{29} \ I_{24} \\ - \ I_{25} \ I_{29} \ I_{25} \ I_{29} \\ - \ I_{25} \ I_{29} \ I_{25} \\ - \ I_{25} \ I_{29} \ I_{24} \\ - \ I_{29} \ I_{24} \ I_{25} \ I_{29} \ I_{25} \ I_{29} \\ - \ I_{25} \ I_{29} \ I_{24} \\ - \ I_{29} \ I_{24} \ I_{25} \ I_{29} \ I_{25} \ I_{29} \ I_{24} \\ - \ I_{29} \ I_{24} \ I_{25} \ I_{29} \ I_{24} \\ - \ I_{29} \ I_{24} \ I_{25} \ I_{29} \ I_{25} \ I_{29} \ I_{24} \\ - \ I_{29} \ I_{24} \ I_{25} \ I_{29} \ I_{25} \ I_{29} \ I_{24} \\ - \ I_{29} \ I_{24} \ I_{25} \ I_{29} \ I_{25} \ I_{29} \ I_{24} \\ - \ I_{29} \ I_{24} \ I_{25} \ I_{29} \ I_{25} \ I_{29} \ I_{24} \ I_{25} \ I_{29} \ I_{25} \ I_{29} \ I_{29} \ I_{24} \ I_{25} \ I_{29} \ I_{25} \ I_{29} \ I_{25}$	23	$0,1$ $I_{\rm H}$ $\leq I$ $\leq 0,2$ $I_{\rm H}$	-	,		,	-	,	,	,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	021.<1.	1,0	,	,	2,7	2,6	3,0		4,6
$24 \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0,2 \mathbf{I}_{H1} \geq \mathbf{I}_1 < \mathbf{I}_{H1}$	-	2,8	2,4		-	,		
$24 = \begin{bmatrix} 0.01 \ I_{H1} \leq I_{1} < 0.02 \ I_{H1} \\ 0.02 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \leq I_{1} < I_$		1,<1,<111,	0,8	,	1,1	1,9	2,5	2,9		4,1
$24 = \begin{bmatrix} 0,01 & I_{H1} \leq I_{1} < 0,02 & I_{H1} \\ 0,02 & I_{H1} \leq I_{1} < 0,05 & I_{H1} \\ 0,05 & I_{H1} \leq I_{1} < 0,1 & I_{H1} \\ 0,05 & I_{H1} \leq I_{1} < 0,2 & I_{H1} \\ 0,1 & I_{H1} \leq I_{1} < 0,2 & I_{H1} \\ 0,2 & I_{H1} \leq I_{1} < I_{H1} \\ 0,2 & I_{H1} \leq I_{1} < I_{H1} \\ 0,2 & I_{H1} \leq I_{1} < I_{H1} \\ 0,3 & I_{H1} \leq I_{1} < I_{H1} \\ 0,4 & I_{H1} \leq I_{1} < I_{1} \\ 0,5 & I_{H1} \leq I_{1} < I_{1} \\ 0,7 & I_{H1} \leq I_{1} < I_{1} \\ 0,8 & I_{1} & I_{1} & I_{1} \\ 0,9 & I_{1} & I_$		I _H 1 \geq I ₁ \geq I,2 I _H 1	-	2,1	1,8	1,3	-	5,9	5,5	4,7
24		$0.01 \ I_{\text{H}1} \le I_1 < 0.02 \ I_{\text{H}1}$	2,0	ı	-	-	3,1	-	ı	ı
$24 = \begin{bmatrix} 0.02 \ I_{H1} \le I_1 < 0.05 \ I_{H1} \\ 0.05 \ I_{H1} \le I_1 < 0.1 \ I_{H1} \\ 0.05 \ I_{H1} \le I_1 < 0.2 \ I_{H1} \\ 0.09 \ I_{.2} \ I_{.3} \\ 0.09 \ I_{.2} \ I_{.3} \ I_{.0} \\ 0.09 \ I_{.2} \ I_{.3} \ I_{.4} \\ 0.09 \ I_{.4} \ I_{.4} \ I_{.4} \ I_{.4} \\ 0.09 \ I_{.4} \ I_{.4} \ I_{.4} \ I_{.4} \\ 0.09 \ I_{.4} \ I_{.4} \ I_{.4} \ I_{.4} \ I_{.4} \\ 0.09 \ I_{.4} \ $			-	ı	-	-	-	-	ı	ı
24		$0.02 \ I_{\text{H}1} \le I_1 < 0.05 \ I_{\text{H}1}$	1,8	,		,	3,0		,	,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	5,7	4,7		-			8,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.05 L < L < 0.1 L	1,0	,	1,6	2,8	2,6	3,0	3,3	4,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	$0.03 I_{\rm H1} \le I_1 < 0.1 I_{\rm H1}$	-	3,3	2,8	1,9	-		6,4	5,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		011.<1.<021.	0,9	1,2	1,3	2,4	2,5	3,0	3,2	4,4
$I_{H1} \leq I_{1} < I_{H1} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$0,1 \mathbf{I}_{H1} \leq \mathbf{I}_{1} \leq 0,2 \mathbf{I}_{H1}$	-	2,8	2,3	1,6	-	5,5	5,1	4,5
$I_{H1} \leq I_{1} \leq 1, 2 \ I_{H1} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		021.<1.1.	0,8	,	1,1	1,9	2,5	2,9	3,1	4,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0,2 \mathbf{I}_{\mathrm{H}1} \leq \mathbf{I}_1 \leq \mathbf{I}_{\mathrm{H}1}$	-	2,1	1,8	1,4	-	4,6	4,3	4,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I . < L < 1.2 I .	0,8	1,0	1,1	1,9	2,5	2,9	3,1	4,1
$25 \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\mathbf{I}_{\mathrm{H}} \subseteq \mathbf{I}_{1} \subseteq \mathbf{I}_{2} \subseteq \mathbf{I}_{\mathrm{H}}$	-	2,1	1,8	1,3	-	4,2	4,0	3,9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.05 L < L < 0.1 L	1,7	2,4		5,4	2,9	3,6	4,0	6,5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$0,03 I_{\rm H1} \le I_1 < 0,1 I_{\rm H1}$	-	5,6	4,5	2,8	-	8,4	7,4	5,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		011.<1.<021	1,5	2,0		,	2,8	3,4	3,7	5,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	$0,1$ $I_{H1} \geq I_1 \leq 0,2$ I_{H1}	-	4,6		2,3	_	6,6	5,9	4,8
- 2,9 2,4 1,0 - 5,0 4,6 4,1 - 2,9 2,4 1,0 - 5,0 4,6 4,1 - 3,0 4,6 4,1	23	021.<1.1	1,0	1,3	1,5	2,7	2,6	3,0	3,2	4,6
		$\mathbf{U}, \mathbf{Z} \mathbf{I}_{\mathrm{H}1} \geq \mathbf{I}_{1} \leq \mathbf{I}_{\mathrm{H}1}$	-	2,9	2,4	1,6	-	5,0	4,6	4,1
$ 1_{\mathrm{H}} \geq 1_{1} \geq 1_{1} \leq 1_{\mathrm{H}} $ 2.1 1.9 1.2 4.2 4.0 2.0		1 /1 /101	0,8	,	,		2,5	2,9	3,1	,
- 2,1 1,0 1,3 - 4,2 4,0 3,9		$\mathbf{I}_{\mathrm{H}1} \geq \mathbf{I}_1 \geq \mathbf{I}_2 \perp \mathbf{I}_{\mathrm{H}1}$	-	2,1	1,8	1,3	-	4,2	4,0	3,9

Примечания:

1. Характеристики относительной погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);

2. Нормальные условия:

- параметры сети: диапазон напряжения от $0.99 \cdot U_{\text{ном}}$ до $1.01 \cdot U_{\text{ном}}$, диапазон силы тока от $0.01 \cdot I_{\text{ном}}$ до $1.2 \cdot I_{\text{ном}}$, диапазон коэффициента мощности $0.5_{\text{инд.}} \le \cos \phi \ge 0.8_{\text{емк.}}$, диапазон частоты от 49.85 до 50.15 Гц;
- температура окружающего воздуха от +21 °C до +25 °C
- магнитная индукция внешнего происхождения (в месте установки счётчиков), не более 0,05 мТл.

3. Рабочие условия:

- параметры сети для ИК № 1-23, 25: диапазон напряжения - от $0.9 \cdot U_{\text{ном}}$ до $1.1 \cdot U_{\text{ном}}$; диапазон силы тока - от $0.05 \cdot I_{\text{ном}}$ до $1.2 \cdot I_{\text{ном}}$; диапазон коэффициента мощности $0.5_{\text{инд.}} \le \cos \phi \le 1$, диапазон частоты - от 49.6 до 50.4 Γ Ц;

- параметры сети для ИК № 24: диапазон напряжения от $0.9 \cdot U_{\text{ном}}$ до $1.1 \cdot U_{\text{ном}}$; диапазон силы тока от $0.01 \cdot I_{\text{ном}}$ до $1.2 \cdot I_{\text{ном}}$; диапазон коэффициента мощности $0.5_{\text{инд.}} \le \cos \phi \le 1$, диапазон частоты от 49.6 до 50.4 Гц;
- допускаемая температура окружающего воздуха: для измерительных ТТ и ТН в зависимости от вида климатического исполнения и категории размещения по ГОСТ 15150-69; счетчиков электрической энергии от -40 до +60 °C; контроллеров сетевых индустриальных от -10 до +50 °C; устройств синхронизации времени от -10 до +50 °C:
- магнитная индукция внешнего происхождения (в месте установки счётчиков), не более 0.5 мТл.

Надёжность применяемых измерительных компонентов в АИИС КУЭ:

- в качестве показателей надёжности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 7746-2001 и ГОСТ 1983-2001, определены средний срок службы и средняя наработка на отказ;
- электросчётчик среднее время наработки на отказ не менее $T_0 = 90000$ ч., среднее время восстановления работоспособности не более $t_{\scriptscriptstyle B} = 2$ ч.;
- УСПД среднее время наработки на отказ не менее $T_0 = 70000$ ч., среднее время восстановления работоспособности не более $t_{\rm B} = 2$ ч.;
- УСВ среднее время наработки на отказ не менее $T_0 = 35000$ ч., среднее время восстановления работоспособности не более $t_{\scriptscriptstyle B} = 2$ ч;
- ИВК коэффициент готовности не менее $K_{\Gamma}=0{,}99$ ч., среднее время восстановления работоспособности не более $t_{\scriptscriptstyle B}=1$ ч.

Оценка надёжности АИИС КУЭ в целом, не менее:

- $K_{\Gamma_{AUUC\ KY9}} = 0,999$ коэффициент готовности;
- То диис куэ = 3149,86 ч. среднее время наработки на отказ.

Надёжность системных решений:

- применение конструкции оборудования и электрической компоновки, отвечающих требованиям IEC Стандартов;
- стойкость к электромагнитным воздействиям;
- ремонтопригодность;
- программное обеспечение отвечает требованиям ISO 9001;
- функции контроля процесса работы и средства диагностики системы;
- резервирование электропитания оборудования системы;
- в журналах событий счетчиков и УСПД фиксируются факты:
 - 1. параметрирования;
 - 2. пропадания напряжения;
 - 3. коррекция времени.
- в журнале событий сервера фиксируются факты:
 - 1. даты начала регистрации измерений;
 - 2. перерывы электропитания;
 - 3. программные и аппаратные перезапуски;
 - 4. установка и корректировка времени;
 - 5. нарушение защиты сервера;
 - 6. отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.
- мониторинг состояния АИИС КУЭ:
 - 1. возможность съема информации со счетчика автономным способом;
 - 2. возможность получения параметров удаленным способом;
 - 3. визуальный контроль информации на счетчике.

Защищённость применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - 1. электросчётчиков;
 - 2. промежуточных клеммников вторичных цепей напряжения;
 - 3. испытательных коробок;
 - 4. УСПД;
 - 5. сервера.
- наличие защиты результатов измерений при передаче информации (возможность использования цифровой подписи) на программном уровне;
- наличие защиты на программном уровне при параметрировании счетчиков, УСПД и сервера:
 - 1. установка пароля на счётчик;
 - 2. установка пароля на УСПД;
 - 3. установка пароля на сервер.

Глубина хранения информации (профиля):

- электросчётчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 сут.;
- контроллер сетевой индустриальный суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 сут.;
- сервер хранение результатов измерений и информации состояний средств измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «Независимая энергосбытовая компания Краснодарского края» для электроснабжения городских электросетей в границах города Славянск-на-Кубани (АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани»).

Комплектность средства измерений

Полная комплектность системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Независимая энергосбытовая компания Краснодарского края» для электроснабжения городских электросетей в границах города Славянск-на-Кубани (АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани») определяется проектной документацией на систему.

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ ОАО «Независимая энергосбытовая компания Краснодарского края» для электроснабжения городских электросетей в границах города Славянск-на-Кубани (АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани») представлена в таблице 3.

Таблица 3 – Комплектность АИИС КУЭ

Наименование	Количество
1	2
Измерительный трансформатор тока ТЛМ-10	14 шт.
Измерительный трансформатор тока ТПЛ-10	12 шт.
Измерительный трансформатор тока ТПЛМ-10	6 шт.
Измерительный трансформатор тока ТВЛМ-10	2 шт.
Измерительный трансформатор тока ТОЛ-СЭЩ-10	8 шт.
Измерительный трансформатор тока ТЛК 10-5	2 шт.
Измерительный трансформатор тока ТОП-0,66	6 шт.
Измерительный трансформатор тока Т-0,66	3 шт.
Измерительный трансформатор напряжения НТМИ-10-66	4 шт.
Измерительный трансформатор напряжения НАМИ-10	1 шт.
Измерительный трансформатор напряжения ЗНОЛП.4-10	3 шт.
Измерительный трансформатор напряжения ЗНИОЛ-10	3 шт.
Измерительный трансформатор напряжения ЗНОЛ.06-10	3 шт.
Счётчик электроэнергии многофункциональный типа СЭТ-4ТМ.03М	17 шт.
Счётчик электроэнергии многофункциональный типа СЭТ-4ТМ.03	8 шт.
Коробка испытательная ЛИМГ	25 шт.
Разветвитель интерфейса RS-485 ПР-3	20 шт.
Шкаф учета	3 шт.
Шкаф учета в составе: преобразователь интерфейса MOXA TCC-1001 - 2 шт., GSM модем Siemens MC35i в комплекте с блоком питания Siemens LOGO! Power - 2 шт, источник бесперебойного питания Smart -UPS SUA750I, термостат KTO, термостат KTS, тепловентилятор HGL 04601.0-00, фильтрующий вентилятор SK, светильник KLO.	5 комплектов
Шкаф учета в составе: GSM-модем СИКОН ТС65 - 2 шт., источник бесперебойного питания, компактный вентилятор (опционально), нагревательный элемент (опционально).	3 комплекта
Шкаф УСПД в составе: контроллер сетевой индустриальный СИКОН С70, устройство синхронизации времени УСВ-2, GSM-модем СИКОН ТС65 - 2 шт, источник бесперебойного питания.	2 комплекта
Шкаф ИВК в составе: сервер сбора данных HP ProLiant DL380G5, сервер базы данных HP ProLiant DL380, коммутатор Ethernet HP ProCurve Switch 2626, 16-портовый асинхронный сервер RS-232 в Ethernet Moxa Nport 5610, 1-портовый асинхронный сервер интерфейсов RS-232/422/485 Moxa NPort IA 5150i-T, межсетевой экран Cisco PIX 506E, GSM-модем CINTERION – 4 шт., блок питания LOGO! Power 6EP1322-1SH02 – 3 шт., модем ZyXEL U-336E plus в комплекте с блоком питания, устройство синхронизации времени УСВ-1, источник бесперебойного питания APC Smart-UPS 2200, консоль с клавиатурой HP TFT7600.	1 комплект
Сервер, оснащенный ОС Microsoft Windows 2003 Server, система управления базами данных (СУБД) Microsoft Windows SQL 2003 Server, (ПО) «Пирамида 2000»	1 комплект
APM персонала, оснащенный ОС Windows XP Pro, (ПО) «Пирамида 2000»	1 комплект

1	2
Переносный компьютер, оснащенный ОС Windows XP Pro, ПО для работы со счётчиками СЭТ-4ТМ.03, СЭТ-4ТМ.03М «Конфигуратор СЭТ-4ТМ», с оптическим преобразователем для работы со счётчиками системы	1 комплект
Паспорт-Формуляр ЕКМН.466453.022-22 ПФ	1 экземпляр
Руководство пользователя ЕКМН.466453.022-22 ИЗ	1 экземпляр
Инструкция по эксплуатации КТС ЕКМН.466453.022-22 ИЭ	1 экземпляр
Методика поверки 132-СП-АС-МП	1 экземпляр

Поверка

осуществляется по документу 132-СП-АС-МП «Система автоматизированная информационно-измерительная коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «Независимая энергосбытовая компания Краснодарского края» для электроснабжения городских электросетей в границах города Славянск-на-Кубани (АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани»). Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 01 ноября 2013 г.

Средства поверки измерительных компонентов:

- трансформаторов тока по ГОСТ 8.217-2003 «Государственная система обеспечения единства измерений. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения по ГОСТ 8.216-2011 «Государственная система обеспечения единства измерений. Трансформаторы напряжения. Методика поверки» и/или по МИ 2845-2003 «ГСИ Измерительные трансформаторы напряжения 6/√3...35 кВ. Методика проверки на месте эксплуатации»;
- счётчиков электрической энергии типа СЭТ-4ТМ.03 в соответствии с методикой поверки ИЛГШ.411152.124 РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.124 РЭ, согласованной с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 г.;
- счётчиков электрической энергии типа СЭТ-4ТМ.03М в соответствии с методикой поверки ИЛГШ.411152.145РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ, согласованной с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г.;
- контроллеров сетевых индустриальных типа СИКОН С70 в соответствии с документом «Контроллеры сетевые индустриальные СИКОН С70. Методика поверки ВЛСТ 220.00.000 И1», утвержденным ГЦИ СИ ФГУП «ВНИИМС» в 2005 году;
- устройства синхронизации времени типа УСВ-1 в соответствии с документом «Устройство синхронизации времени УСВ-1. Методика поверки ВЛСТ 221.00.000МП», утвержденным ФГУП «ВНИИФТРИ» 15 декабря 2004 г.;
- устройств синхронизации времени типа УСВ-2 в соответствии с документом «Устройство синхронизации времени УСВ-2. Методика поверки ВЛСТ 237.00.000И1», утвержденным ФГУП «ВНИИФТРИ» 31 августа 2009 г.;
- радиочасы МИР РЧ-01 (Госреестр СИ РФ № 27008-04), принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS);
- переносной компьютер с оптическим преобразователем и ПО для работы со счётчиками системы и ПО для работы с радиочасами МИР РЧ-01;

- термогигрометр «CENTER» (Госреестр СИ РФ № 22129-04): диапазон измерений температуры от минус 20 до 60 °C; диапазон измерений относительной влажности от 10 до 100 %.

Сведения о методиках (методах) измерений

Методика измерений изложена в документе 132-СП-АС «Модернизация АИИС КУЭ филиала ОАО «НЭСК-электросети» «Славянскэлектросеть». Рабочая/проектная документация. Автоматизированная информационно-измерительная система коммерческого учёта электроэнергии».

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «Независимая энергосбытовая компания Краснодарского края» для электроснабжения городских электросетей в границах города Славянск-на-Кубани (АИИС КУЭ ОАО «НЭСК» для ГТП «Славянск-на-Кубани»)

- 1. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».
- 2. ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».
- 3. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 4. ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».
- 5. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
- 6. ГОСТ 31819.22-2012 (IEC 62053-22:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счётчики активной энергии классов точности 0,2S и 0,5S».
- 7. ГОСТ 31819.23-2012 (IEC 62053-23:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счётчики реактивной энергии».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Закрытое акционерное общество «ЭнергоПромСервис»

(ЗАО «ЭнергоПромСервис»)

Юридический адрес: 620062, г. Екатеринбург,

проспект Ленина, 101/2, офис 300.

Почтовый адрес: 620137, г. Екатеринбург, а/я 99.

Тел.: (343) 220-78-20 Факс: (343) 220-78-22

Заявитель

Открытое Акционерное Общество

«Независимая энергосбытовая компания Краснодарского края»

Юридический адрес: 350049, г. Краснодар,

ул. Северная, дом 247.

Почтовый адрес: 350049, г. Краснодар,

ул. Северная, дом 247

тел.: (861) 216-83-01, факс: (861) 216-83-05,

e-mail: nesk@nesk.ru.

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Юридический адрес:

119361, г. Москва, ул. Озёрная, д. 46

тел./факс: 8 (495) 437-55-77

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.П. «____»____2015 г.